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Chapter 1

Introduction

1.1 Notation and Preliminaries

Suppose that the state of the economy or some economic system is described
in period t by a vector xt which comprises as its entries the variables of inter-
est. A difference equation or dynamical system then specifies the evolution
of this state over time. The vector xt takes value in some normed vector
space X referred to as the state space. In almost all cases we identify the
state space with Rd, d = 1, 2, . . ., endowed with the Euclidean norm.1 d
is called the dimension of the system. In this monograph the time index t
takes on discrete values and typically runs over all integer numbers Z, e.g.
t = . . . ,−2,−1, 0, 1, 2, . . . Sometimes we consider the nonnegative integers
Z+ = N ∪ {0} only. By interpreting t as the time index, we have automati-
cally introduced the notion of past, present and future.

A difference equation is then nothing but a rule or a function which
instructs how the economic forces transform the current state xt into next
periods state xt+1, given current and past states, xt, xt−1, . . . , xt−p+1, and
time t. In its most general form a difference equation can be written as

F (xt+1, xt, xt−1, . . . , xt−p+1, t) = 0 (1.1)

where F is a given function. The difference between the largest and the
smallest time index of the state variable explicitly involved is called the or-
der of the difference equation. In the formulation (1.1), this is p with p ≥ 1.
In the difference equation above the time index appears explicitly as an ar-
gument of the function F . In this case one speaks of a nonautonomous or
nonhomogeneous difference equation. If time is not a separate argument and

1See Section C.1 for mathematical definitions and terminology.
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2 CHAPTER 1. INTRODUCTION

enters only as an index of the state variable, the equation is said to be au-
tonomous or homogeneous. In many applications, the nonautonomous term
enters the difference equation by replacing the time index in equation (1.1)
by some variable bt ∈ Rd. This variable is called the exogenous or indepen-
dent variable and may be composed of several variables. F.e. bt = Czt where
zt ∈ Rk with k ≥ 1 and C is a d × k matrix. The variable xt is called the
endogenous or dependent variable.

With the exception of Section 3.5, we will always assume that it is possible
to solve equation (1.1) uniquely for xt+1:

xt+1 = f(xt, xt−1, . . . , xt−p+1, t) (1.2)

The difference equation is called normal in this case. Obviously, it is possible
to rewrite the above equation as a first order equation by enlarging the state
space to become Rdp.2 Thus, in many instances it is sufficient to consider
just the first order case:

xt+1 = f(xt, t). (1.3)

Because f(., t) maps X into itself, the function f is also called a transforma-
tion. Most of this monograph considers the following transformations:

linear: f(xt, t) = Axt;

affine: f(xt, t) = Axt + bt;

linear time-varying: f(xt, t) = Atxt;

affine time-varying: f(xt, t) = Atxt + bt.

Besides deterministic equations, we will also consider stochastic difference
equations of the form:

Atxt = BtEtxt+1 − bt
where Etxt+1 denotes the conditional expectation of xt+1 based on informa-
tion up to period t. In the most general form considered in this monograph
the vector of exogenous variables bt and the matrices At and Bt are allowed
to vary randomly. Note that the introduction of the conditional expectation
induces time to flow in one direction (the natural one) – the difference can-
not be reversed. A precise description of the randomness and the conditional
expectation is postponed to the corresponding chapters.

Returning to the deterministic case, the system may be initialized at some
date t0 which in most cases is taken to be t0 = 0. Given some starting value x
in period 0, the difference equation (1.3) uniquely determines all subsequent

2The enlarged state variable then is (x′t, x
′
t−1, . . . , x

′
t−p+1)′ ∈ Rdp.
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values of xt, t = 1, 2, . . . , by iteratively inserting into equation (1.3). In the
autonomous case this leads to:

x0 = x

x1 = f(x0) = f(x)

x2 = f(x1) = f(f(x)) = f ◦ f(x) = f 2(x)

. . .

xt = f(xt−1) = f ◦ · · · ◦ f︸ ︷︷ ︸
t times

(x) = f t(x)

where ◦ denotes the composition of functions. Hence the value of the state
variable in period t is a function of the starting value x. To make this
dependence explicit, we write xt = ϕ(t, x). As a results of this iteration
the difference equation generates a sequence xt = ϕ(t, x), t = 0, 1, 2, . . .
called a trajectory. The set of values achieved by a particular trajectory is
called an (positive or forward) orbit and is denoted by O+(x) = {ϕ(t, x) |
t = 0, 1, 2, . . .}. If f is continuous with a continuous inverse, i.e. if f is
a homeomorphism, one can iterate the system backward in time to obtain
x−1 = f−1(x0) = f−1(x), x−2 = f−2(x0) = f−2(x), . . . Collecting all values
into a set one obtains the (full) orbit O(x):

O(x) = {. . . , x−2, x−1, x0, x1, x2, . . .}
= {ϕ(t, x) | t ∈ Z}.

Figure 1.1 displays the evolution of a dynamic system graphically.
The triplet (X,Z, ϕ) defines a discrete (continuous) dynamical over time

Z, state space X, and a (continuous) function ϕ : Z × X → X with the
following properties:

(i) ϕ(0, x) = x for all x ∈ X;

(ii) ϕ(t+ s, x) = ϕ(t, ϕ(s, x)) for all t, s ∈ Z and all x ∈ X.

These two attributes define the cocycle properties. For every t ∈ Z the system
defines a transformation ϕ(t, .) = ϕt : X → X. The cocycle properties then
read as ϕ0 = idX and ϕt+s = ϕs ◦ϕt. The second property then implies that
ϕt ◦ϕ−t = idX. Hence, for each t ∈ Z, ϕt has an inverse given by ϕ−1

t = ϕ−t.
As a consequence the system is completely determined by ϕ1.

Viewed as function of t, ϕ(., x) = ϕx : Z → X defines a solution to the
difference equation. Hence any function ϕ : Z → X such that ϕ(t) fulfills
the difference equation (1.1), i.e. such that

F (ϕ(t+ 1), ϕ(t), ϕ(t− 1), . . . , ϕ(t− p+ 1), t) = 0, (1.4)
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x =f(x )1 0

t+1 
x =f(x )=f (x )t+1 t 0

x =f(x )=f(f(x ))2 1 0

x0

d
R

Figure 1.1: A trajectory (orbit) starting in x0 in period t0 = 0
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holds for all t ∈ Z, is called a solution of the difference equation.

The notation explicitly shows the dependence of the solutions on x.
Hence, there usually exists a whole family of solutions indexed by x ∈ X. To
select a unique solution additional requirements such as boundary conditions
are necessary. The combination of a difference equation with boundary con-
ditions are called boundary value problems. In economics these conditions
usually take two forms: initial value conditions and terminal conditions. Ini-
tial value conditions are conditions which require that the state variables
take a particular value xt0 at some prespecified date t0. This date is typically
the period t0 = 0. If the state variable is a vector, only certain entries may
be subject to initial value conditions. Typical economic variables subject to
initial value conditions are the capital stock in growth models or the price
level in Keynesian models with sticky prices. Such variables are also called
predetermined. Terminal conditions typically arise in rational expectations
models. They determine the initial value x by requiring that limt→∞ ϕ(t, x)
remains bounded or converges to some prespecified value, zero for example.
If the state variable is a vector, only certain entries may be subject to termi-
nal conditions. Typical economic variables subject to terminal conditions are
asset market prices. In many economic models initial value conditions and
terminal conditions appear simultaneously as in the Dornbusch model (see
Section 4.1) or the optimal growth model (see Section 4.2). If the boundary
conditions are sufficient to pin down a unique solution, the economic model
is said to be determinate. If the boundary conditions are not sufficient to
pin down a unique solution such that a whole family of possible solutions
remains, the economic model is said to be indeterminate.

The aim of the analysis is to assess the existence and uniqueness of a
solution to a given difference equation, respectively boundary value problem;
and, in the case of many solutions, to characterize the set of all solutions. In
addition we are interested in the convergence or divergence of solutions and
their sensitivity with respect to the initial value.

1.2 Steady State and Stability

Usually, we are not only interested in describing the evolution of the depen-
dent variable over time, but we also want to know some qualitative prop-
erties of the solutions. In particular, we want to characterize its long-run
or asymptotic behavior. Consider the nonautonomous first order difference
equation (1.3), xt+1 = f(xt, t). Then, an equilibrium point, fixed point or
steady state is defined as follows.
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Definition 1.1 (Equilibrium Point, Steady State). A point x∗ ∈ X in the
domain of f is called an equilibrium point, fixed point, or a steady state if it
satisfies the equation

x∗ = f(x∗, t), for all t ∈ Z. (1.5)

Equivalently, a solution ϕ(t, x∗) with initial condition ϕ(0, x∗) = x∗ satisfies
ϕ(t, x∗) = x∗ for all t ∈ Z. Thus, the orbit of x∗ just consists of x∗, i.e.
O(x∗) = {x∗}. It is perfectly possible that the dynamical system possesses
more than one equilibrium point.

While the system is at rest once it reached an equilibrium point, the
question remains what happens in its vicinity or equivalently what happens
when the system is disturbed by some small amount. Will it return to its
equilibrium point or will it diverge from it? This issue is treated under
the heading of stability theory. Using a norm ‖.‖ on X, the following basic
concepts of stability can be defined.3

Definition 1.2 (Stability). An equilibrium point x∗ is called

� stable if for all ε > 0, there exists δε > 0 such that

‖x0 − x∗‖ < δε implies ‖xt − x∗‖ < ε for all t > 0, (1.6)

or equivalently

‖x− x∗‖ < δε implies ‖ϕ(t, x)− x∗‖ < ε for all t > 0.

Hence, if the system is initiated within a distance δε from the equilib-
rium point, all subsequent values will remain within a distance ε from
the equilibrium point.
If x∗ is not stable, it is called unstable.

� attracting if there exists η > 0 such that

‖x0 − x∗‖ < η implies lim
t→∞

xt = x∗, (1.7)

or equivalently

‖x− x∗‖ < η implies lim
t→∞

ϕ(t, x) = x∗.

If η = ∞, x∗ is called globally attracting. Hence, if the system is
initiated within a distance η from the equilibrium point, the sequence
{xt = ϕ(t, x)} converges to this equilibrium point.

3One obtains similar definitions using a distance instead of a norm.
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� asymptotically stable or is an asymptotically stable equilibrium point4 if
it is stable and attracting. If η =∞, x∗ is called globally asymptotically
stable.

� exponentially stable if there exists δ > 0, M > 0, and η ∈ (0, 1) such
that for the solution ϕ(t, x0) we have

‖ϕ(t, x0)− x∗‖ ≤M ηt ‖ϕ(0, x0)− x∗‖ whenever ‖x0 − x∗‖ < δ.

� A solution ϕ(t, x0) is called bounded if there exists a positive constant
M <∞ such that

‖ϕ(t, x0)‖ ≤M, for all t.

Thereby the constant M may depend on x0.

Remark 1.1. Clearly, exponential stability implies stability and, therefore,
asymptotic stability and attractiveness. The reverse is, however, not true for
each of these implications.

At this point is seems appropriate to analyze some examples.

(i) The simplest example is the linear univariate first order case: xt+1 = φxt
with xt ∈ R and φ ∈ R \ {0}. Depending on the value of φ, there are
two possibilities: φ 6= 1 then x∗ = 0 is the only equilibrium point; φ = 1
then every point in R is an equilibrium point.
It is easy to see that all solutions are of the form xt = ϕ(t, x) = φtx
(see Section 2.1 in the next chapter). Hence, zero is an exponentially
stable equilibrium point if and only if |φ| < 1. If |φ| > 1, xt = ϕ(t, x) =
φtx diverges, except for x = 0. Thus, zero is an unstable equilibrium
point. If φ = −1, xt = ϕ(t, x) oscillates between x and −x. If φ = 1,
xt = ϕ(t, x) is constant and equal to x for all t ∈ Z.

(ii) A slight modification to the previous case is achieved when f is an affine
instead of a linear function: xt+1 = φxt+b where b ∈ R\{0}. Assuming
φ 6= 1, the unique equilibrium point is x∗ = b/(1 − φ). For φ = 1 no
equilibrium point exists.
Because the difference equation may be written in terms of deviations
from steady state, i.e. (xt+1 − x∗) = φ(xt − x∗), φ 6= 1, the stability
analysis for x∗ is similar to the previous case. x∗ is exponentially stable
if |φ| < 1 and unstable if |φ| > 1. If φ = −1, xt oscillates between x0

and −x0 + b implying that x∗ is unstable in this case too.

4In economics the distinction between stable and attracting is not made. Asymptotic
stability is then identified with stability.
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(iii) A popular and well-studies example of a nonlinear difference equation
is the logistic function with µ > 1:

f(x) =

{
µx(1− x), if 0 ≤ x ≤ 1;
0, otherwise.

(1.8)

This function was made popular by May (1976) as a description of popu-
lation dynamics where the quadratic term is supposed to accommodate
saturation effects. The parameter µ thereby captures the surround-
ing conditions like food supply or climatic conditions. The equilibrium
points are determined by the quadratic equation: x∗ = µx∗(1 − x∗).
The two solutions are x∗ = 0 and x∗ = (µ − 1)/µ. Hence the corre-
sponding difference equation has two equilibrium points. f(x) attains a
maximum value of µ/4 at x = 1/2. The stability analysis is postponed
to the end of this Section.

(iv) The following example from Sedaghat (1997) and Elaydi (2005, 181–
182) shows that an equilibrium point can be attracting, but unstable:

xt+1 = f(xt) =

{
−2xt, for xt < µ;

0, otherwise,
(1.9)

where µ > 0 is a given threshold. It is obvious that x∗ = 0 is a fixed
point. The solutions of this difference equation are

xt = ϕ(t, x) =

{
(−2)tx, if (−2)t−1x < µ;

0, if (−2)t−1x ≥ µ,

where x is some starting value. If x ≥ µ, then xt = 0 for all t ≥ 0. If
x < µ, then f(xτ ) ≥ µ for some τ > 0. Thus, xt = 0 for t ≥ τ . The fixed
point x∗ = 0 is therefore attracting, even globally attracting. However,
x∗ = 0 is unstable because points x 6= 0, but arbitrarily close to zero,
are mapped to points further away until they exceed the threshold µ.
Figure 1.3 displays the corresponding Cobweb–diagram.
It can be shown that such a situation can only arise because f is not
continuous. In particular, if f is a continuous function on the real line
a fixed point cannot be simultaneously attracting and unstable (see
Sedaghat, 1997; Elaydi, 2005).

In the univariate case it is usually very convenient to represent the loca-
tion of equilibrium points and the dynamics graphically. For this purpose,
draw first the graph of the function y = f(x) in the (xt, xt+1) plane. Then,
draw the graph of the identity function y = x which is just a line through
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the origin having an angle of 450 with the x-axis and is denoted by ∆. The
equilibrium points are the points where ∆ intersects with the graph of the
function y = f(x). Starting from some initial value x0, the evolution of xt is
then represented in the (xt, xt+1)-plane by the following sequence of points.
Having computed the first t ≥ 0 points:

1. Start from (xt, 0). Move vertically up until you intersect the graph of
f at (xt, f(xt)).

2. Move horizontally until you hit the diagonal ∆ at (f(xt), f(xt)) =
(xt+1, xt+1). The projection on the x-axis is xt+1 = f(xt).

3. Move vertically until you hit the graph of f , then again horizontally
until you hit the diagonal.

4. Repeat the steps above.

At step t ≥ 1, one hits the graph of f at (f t−1(x0), f t(x0)) and the diagonal ∆
at (f t(x0), f t(x0)). Hence, the projection on the x-axis of the points obtained
gives the orbit O(x0). Connecting these points by line segments gives the
so-called stair step or Cobweb–diagram.

Figure 1.2 shows displays the graphical analysis of the logistic func-
tion (1.8) taking µ = 2.5. The two steady states are x∗ = 0 and x∗ = 0.6.
Obviously, the first steady state is unstable whereas the second one seems
to be stable. The solution ϕ(t, 0.1) converges and approaches x∗ = 0.6 in a
circular fashion.

Figure 1.3 displays the Cobweb-diagram for the function (1.9). It shows
how the trajectory spirals away from the equilibrium point just to return to
it once the threshold is exceeded.

1.3 Characterizing Stability

While the above definitions of stability make intuitively sense, a direct veri-
fication of the conditions is often difficult. It is therefore important to have
easily applicable criteria instead. We will focus first on the univariate case
with f : R→ R.

1.3.1 The Univariate Case

A useful criterion for asymptotic stability of fixed points in a situation where
f is continuous, but not necessarily differentiable is provided by Elaydi (2005,
182 and Appendix C).



10 CHAPTER 1. INTRODUCTION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X
t

X
t+

1

f(x) 

450−line 

steady
state 

steady
state 

Figure 1.2: Cobweb diagram with steady states of the logistic function:
f(x) = 2.5x(1− x) and x0 = 0.1

Theorem 1.1 (Criterion Asymptotic Stability). A fixed point x∗ of a con-
tinuous function f is asymptotically stable if and only if there exists an open
interval (a, b) containing x∗ such that f 2(x) > x for a < x < x∗ and f 2(x) < x
for x∗ < x < b.

Proof. See Elaydi (2005).

The most popular criteria are obtained by linearizing the nonlinear equa-
tion at the fixed point. This allows to analysis of local stability. In particular,
the following theorem holds:

Theorem 1.2 (Stability Condition of Nonlinear Equation). Let x∗ be an
equilibrium point of the nonlinear autonomous difference equation

xt+1 = f(xt)

where f is continuously differentiable at x∗. Then,

(i) if |f ′(x∗)| < 1, then x∗ is an asymptotically stable equilibrium point;

(ii) if |f ′(x∗)| > 1, then x∗ is unstable.

Proof. The proof follows Elaydi (2005, 27–28). Suppose that |f ′(x∗)| ≤ M
for some M < 1. Then, because of the continuity of the derivative, there
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Figure 1.3: Cobweb diagram of function (1.9) with µ = 4 and x0 = 0.1
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exists an interval I = (x∗ − γ, x∗ + γ), γ > 0, such that |f ′(x)| ≤ M < 1 for
all x ∈ I. For x0 ∈ I,

|x1 − x∗| = |f(x0)− f(x∗)|.

The mean value theorem A.2 then implies that there exists ξ, x0 < ξ < x∗,
such that

|f(x0)− f(x∗)| = |f ′(ξ)| |x0 − x∗|.

Hence we have
|x1 − x∗| ≤M |x0 − x∗|.

This shows that x1 is closer to x∗ than x0 and is thus also in I because M < 1.
By induction we therefore conclude that

|xt − x∗| ≤M t|x0 − x∗|.

For any ε > 0, let δε = min{γ, ε} then |x0−x∗| < δε implies |xt−x∗| < ε for all
t ≥ 0. x∗ is therefore a stable equilibrium point. In addition, x∗ is attractive
because limt→∞ |Xt −X∗| = 0. Thus, X∗ is asymptotically stable.

Remark 1.2. The proof shows that the equilibrium is even exponentially
stable if f ′(x∗) < 1.

Remark 1.3. Note that the case |f ′(x∗)| = 1 is not treated by this theorem.
It involves a more detailed analysis which involves higher order derivatives
(see Elaydi, 2005, 29–32). In the mathematical literature a fixed point x∗ is
called a hyperbolic fixed point if |f ′(x∗)| 6= 1. Compare this with the analysis
of the second example in Section 1.2 where f(x) = φx+ b.

Example: Newton’s method Suppose we want to determine the solution
to the equation g(x) = 0 and suppose further that there is no analytic solution
available so that we must solve the equation numerically. A well-known and
popular method is the so-called Newton–Raphson method. Given some guess
xt, the method consists in considering the linearized version g(xt)+g′(xt)(x−
xt) = 0 of the equation g(x) = 0. Solving this equation gives an approximate

solution x = xt − g(xt)
g′(xt)

. Taking this solution as the new starting point xt+1

results in a difference equation

xt+1 = f(xt) = xt −
g(xt)

g′(xt)
(1.10)

The steady state of this difference equation is then a solution of the origi-
nal equation, provided g′(x∗) 6= 0. The situation is depicted graphically in
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true solution

Figure 1.4: The Newton-Raphson method for solving iteratively the equation
g(x) = 0
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Figure 1.4 where the approximate solutions xt, xt+1, xt+2 (the solution to the
linearized versions of g(x) = 0) approach the true solution.

In order to study the stability of the difference equation, we evaluate the
derivative of f at x∗:

|f ′(x∗)| =
∣∣∣∣1− (g′(x∗))2 − g(x∗)g′′(x∗)

(g′(x∗))2

∣∣∣∣ .
This derivative is zero because g(x∗) = 0. Then, by Theorem 1.2, x∗ is
asymptotically stable. This implies that limt→∞ xt = x∗ provided x0 is chosen
close enough to x∗.

As an illustration consider the computation of the square root of some
positive number a. Take for this purpose g(x) = x2 − a. The corresponding
difference equation then becomes

xt+1 = xt −
x2
t − a
2xt

=
1

2

(
xt +

a

xt

)
.

Starting with x0 > 0, the difference equation converges to
√
a whereas if

x0 < 0 the limit is −
√
a. The above difference equation has a nice intuitive

interpretation. Suppose xt >
√
a then a/xt <

√
a, thus by taking the arith-

metic average between xt and a/xt one can expect to get closer to
√
a. The

argument holds similarly for xt <
√
a.

Example: Logistic function The stability of the logistic difference equa-
tion at the equilibrium point x∗ = (µ − 1)/µ depends on the slope of
f ′(x∗) = µ− 2µx∗ = 2−µ. Thus, according to Theorem 1.2 x∗ is asymptoti-
cally stable if 1 < µ < 3. Starting from any value x in (0, 1) xt will converge
to x∗. For values of µ > 3 complicated dynamics emerge including chaotic
behavior. Details can be found in May (1976) and Robinson (1999).

1.3.2 The Multivariate Case

We start by studying the linear autonomous case

xt+1 = Axt (1.11)

with xt ∈ Rd and A ∈ GL(d).5 These difference equations have zero as a fixed
point and their solutions are given by xt = ϕ(t, x) = Atx (see Chapter 3, in
particular Section 3.2.1). For these systems the stability is intimately related
to the eigenvalues of A, especially to the spectral radius of A, ρ(A).6 A proof

5GL(d) denotes the general linear group, i.e. the set of all invertible d × d matrices.
A compendium summarizing the most important concepts of linear algebra is provided in
Appendix C.

6The spectral radius is the largest absolute eigenvalue.
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of this assertion is based on the following lemma.

Lemma 1.1. The zero solution of the homogeneous system (1.11) is stable
if and only if there exists M > 0 such that∥∥At∥∥ ≤M for all t ≥ 0. (1.12)

Proof. Suppose that the inequality (1.12) is satisfied then ‖xt‖ ≤ M‖x0‖.
Thus, for ε > 0, let δε = ε

M
. Then ‖x‖ < δε implies ‖xt‖ < ε so that the zero

point is stable.
Conversely, suppose that the zero point is stable. Then for all ‖x‖ < δ,

‖At‖ = sup
‖ξ‖≤1

‖Atξ‖ =
1

δ
sup
‖x‖≤δ

‖Atx‖ ≤ ε

δ
= M

where the first equality is just the definition of the matrix norm (operator
norm) corresponding to the norm inRd. The second equality is a consequence
of ‖x‖ ≤ δ. The inequality follows from the assumption that the zero point
is a stable equilibrium.

Remark 1.4. The condition given in equation (1.12) is equivalent to the
condition that all solutions are bounded.

Theorem 1.3 (Stability). For the homogeneous linear system in X = Rd

xt+1 = Axt, A ∈ GL(d),

the following statements are true:

(i) The zero solution is stable if and only if ρ(A) ≤ 1 and the eigenvalues
on the unit circle are semisimple.

(ii) The zero solution is asymptotically stable if and only if ρ(A) < 1. In
this case, the solution is even exponentially stable.

Proof. According to the previous Lemma 1.1 we have to prove that ‖At‖ ≤M
for some M > 0. Using the Jordan canonical form7 A = QJQ−1, this
amounts to ‖At‖ = ‖QJ tQ−1‖ ≤ M . But this is equivalent to the existence

of a M̃ > 0 such that ‖J t‖ ≤ M̃ . M may then be taken as M = M̃
‖Q‖‖Q−1‖ .

The powers of J are given by powers of the Jordan blocks. The t-th power

7For a definition of the Jordan canonical form the reader is referred to Appendix C.
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of a Jordan block corresponding to the eigenvalue λi is given according to
equation (3.12) by

Jj (λi)
t = (λiI +N)t

= λtiI +

(
t

1

)
λt−1
i N +

(
t

2

)
λt−2
i N2 + · · ·+

(
t

k − 1

)
λt−k+1
i Nk−1

=


λti

(
t
1

)
λt−1
i

(
t
2

)
λt−2
i · · ·

(
t

k−1

)
λt−k+1
i

0 λti
(
t
1

)
λt−1
i · · ·

(
t

k−2

)
λt−k+2
i

...
...

. . . . . .
...(

t
1

)
λt−1
i

0 0 0 · · · λti


where N is a nilpotent matrix of order k, i.e. Nk = 0. The elements in this
matrix become unbounded if |λi| > 1. They also become unbounded if |λi| =
1 and Jj (λi) is not a 1×1 matrix. If, however, for all eigenvalues with |λi| = 1
the largest Jordan blocks are 1×1, then the Jordan segment corresponding to
λi with |λi| = 1, J (λi), is just a diagonal matrix with ones in the diagonal and
is therefore obviously bounded. The Jordan segments, J (λi), corresponding
to eigenvalues |λi| < 1, converge to zero, i.e. limt→∞ J (λi)

t = 0 because
tkλti → 0 as t→∞ by l’Hôpital’s rule.

Theorem 1.3 showed that the stability properties crucially depend on
the location of the eigenvalues relative to the unit circle. If there are no
eigenvalues on the unit circle, small perturbations of A will not affect the
location of the eigenvalues relative to the unit circle because they depend
continuously on the entries of A. Thus, small perturbations preserve the
stability properties. This motivates to bring out matrices with no eigenvalues
on the unit circle in an own definition.

Definition 1.3 (Hyperbolic Matrix). A hyperbolic matrix is a matrix with
no eigenvalues on the unit circle. If A is a hyperbolic matrix, then the
corresponding linear homogeneous difference equation xt+1 = Axt is also
called hyperbolic.

An immediate implication for hyperbolic matrices is that the zero solution
is the unique fixed of the autonomous linear difference equation (1.11).

Definition 1.4 (Hyperbolic Fixed Point). Let x∗ be a fixed point of a con-
tinuously differentiable map f : Rd → Rd, then x∗ is called a hyperbolic fixed
point if and only if the derivative of f at x∗, i.e. the Jacobian matrix Dx∗f ,
is invertible and does not have any eigenvalue on the unit circle.
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Consider a hyperbolic matrix A with spectrum σ(A) = {λ1, . . . , λs},
1 ≤ s ≤ d.8 Then, partition the spectrum into the stable, respectively unsta-
ble eigenvalues, i.e. σs(A) = {λ ∈ σ(A) : |λ| < 1} and σu(A) = {λ ∈ σ(A) :
|λ| > 1}. Denote by Ls the space generated by the eigenvectors (generalized
eigenvectors) corresponding to the eigenvalues in σs(A) and, similarly, by
Lu the space generated by the eigenvectors (generalized eigenvectors) cor-
responding to the eigenvalues in σu(A). The two subspaces span the whole
state space such that

Rd = Ls ⊕ Lu

where ⊕ denotes the direct sum of two linear spaces. It is worth emphasizing
that Ls and Lu are not necessarily orthogonal to each other. Given these
definitions, we may follow Elaydi (2005) and state the following theorem.

Theorem 1.4 (Stable Manifold Theorem). Given a linear autonomous hy-
perbolic difference equation

xt+1 = Axt, A ∈ GL(d). (1.13)

Then the following properties hold:

(i) If ϕ(t, x) is a solution with x ∈ Ls, then ϕ(t, x) ∈ Ls for all t. Moreover,

lim
t→∞

ϕ(t, x) = 0.

(ii) If ϕ(t, x) is a solution with x ∈ Lu, then ϕ(t, x) ∈ Lu for all t. Moreover,

lim
t→−∞

ϕ(t, x) = 0.

Proof. The proof follows Elaydi (2005, theorem 4.14). Let ϕ(t, x) be a so-
lution with x ∈ Ls. The definition of the (generalized) eigenvector corre-
sponding to some eigenvalue λ ∈ σ(A) implies that AEλ = Eλ where Eλ
denotes the space generated by the (generalized) eigenvectors corresponding
to λ. Hence ALs = Ls and ϕ(t, x) ∈ Ls for all t ≥ 0. Given x ∈ Ls, we can
represent x as x =

∑r
j=1 αjej where r is the number of eigenvalues, distinct

or not, strictly smaller than one and ej denotes the (generalized) eigenvec-
tors corresponding to those eigenvalues. Let J = Q−1AQ be the Jordan form
of A. Next, partition the Jordan matrix into blocks of stable, respectively
unstable eigenvalues accordingly:

J =

(
Js 0
0 Ju

)
8The spectrum of a matrix is given by the set of its distinct eigenvalues.
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where Js and Ju are r× r, respectively (n− r)× (n− r) matrices. Therefore,

ϕ(t, x) = Atx = QJ tQ−1x = QJ tQ−1

r∑
j=1

αjej

= Q

(
J ts 0
0 J tu

) r∑
j=1

αjQ
−1ej = Q

r∑
j=1

αj

(
J ts 0
0 J tu

)
Q−1ej

= Q
r∑
j=1

αj

(
J ts 0
0 0

)
Q−1ej.

The last equality follows from the fact that the Q−1ej’s are of the form
(ξ1j, . . . , ξrj, 0, . . . , 0)′ which is a consequence of the ej’s being (generalized)
eigenvectors. This implies that ϕ(t, x) → 0 as t → ∞ because J ts → 0 as
t→∞.

The proof of (ii) is analogous.

Remark 1.5. Theorem 1.4 may be refined by relaxing the assumption of
an hyperbolic matrix and can be sharpened with respect to its conclusions
(Colonius and Kliemann, 2014, theorem 1.5.8).

An interesting special case, often encountered in economics, is obtained
when the system expands in some directions, but contracts in others. In such
a case the fixed point is called saddle point.

Definition 1.5 (Saddle Point). The zero solution of the hyperbolic linear
difference equation xt+1 = Axt is called a saddle point if there exist at least
two eigenvalues of A, λu and λs, such that |λu| > 1 and |λs| < 1.

Linearization

The analogy to one dimensional difference equations suggests to analyze the
stability properties of nonlinear multivariate systems via a linear approxi-
mation around the steady state (compare Theorem 1.2). Consider for this
purpose the nonlinear homogeneous system xt+1 = f(xt) with f : Rd −→ Rd

and fixed point x∗. Suppose that f is continuously differentiable in an open
neighborhood of x∗, then the linearized difference equation is given by

Xt+1 −X∗ = A(Xt −X∗)

where A is the derivative of f evaluated at x∗, i.e. A = Dx∗f , the Jacobian
matrix of partial derivatives. We say that A is a linearization of f if and
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only if f is conjugate to A, i.e. if there exists a homeomorphism h such that
A ◦ h = h ◦ f . Thus, h makes the diagram below commutative.

Rd f−−−→ Rd

h

y h

y
V1 ⊂ Rd A=Dx∗f−−−−−→ V2 ⊂ Rd

where V1 and V2 are open subsets of Rd. If A is a linearization of f , we
can infer the stability properties of f from those of A. Because the latter
are well understood, we even have explicit solution formulas at hand (see
Section 3.2.2), linearization represents a powerful tool in this respect.

Then, naturally, the question arises: which systems have a linearization
and is a system close to a linear one conjugate to it? These questions are
answered, at least locally, by the famous Hartman–Grobman theorem (see f.e.
Elaydi (2005), Robinson (1999, section 5.6) or Coudène (2016, chapter 8)).
This theorem can be seen as an extension of the Stable Manifold Theorem 1.4
to nonlinear difference equations.

Theorem 1.5 (Hartman–Grobman Theorem). If f is a continuously differen-
tiable with hyperbolic fixed point x∗, then there exist neighborhoods U1, U2 ⊂
Rd of x∗ and V1, V2 ⊂ Rd of 0 and a homeomorphism h : U1∪U2 → V1∪V2 that
conjugates f locally to A = Dx∗f , i.e. for all x ∈ U1 h(f(x)) = Dx∗f(h(x))
or

U1 ⊂ Rd f−−−→ U2 ⊂ Rd

h

y h

y
V1 ⊂ Rd A=Dx∗f−−−−−→ V2 ⊂ Rd

Proof. Robinson (See 1999, sections 5.6 and 5.7) or Coudène (2016, section
8.4) among others

Thus, if a fixed point x∗ is hyperbolic, we can analyze its stability prop-
erties by investigating the induced linear homogeneous difference equation
and, in particular, the eigenvalues of the matrix of partial derivatives.
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Chapter 2

Univariate Difference Equations
with Constant Coefficients

While the introduction and the notion of stability was somewhat abstract, we
focus in this chapter on concrete difference equations and examples. In par-
ticular, we study nonautonomous or homogenous linear difference equations
of dimension one (d = 1) and order p ≥ 1 with constant coefficients:

xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + zt, φp 6= 0, (2.1)

where φ1, . . . , φp are given constant real numbers. The variable zt ∈ R repre-
sents the nonautonomous part of the equation which influences the evolution
of xt over time. Its values are given from outside the system. Thus, zt is
called exogenous, independent or forcing variable. It will be shown that for
this type of difference equations explicit solution formulas are available.

2.1 First Order Difference Equation

As a starting point and motivation of the analysis consider the simplest case,
namely the first order (p = 1) affine nonhomogeneous equation:

xt = φxt−1 + zt, φ 6= 0. (2.2)

To this nonhomogeneous equation corresponds a first order linear homoge-
nous equation:

xt = φxt−1. (2.3)

Starting in period 0 at some arbitrary initial value x0 = x, all subsequent
values can be recursively computed by iteratively inserting into the difference

21
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equation (2.3)

x0 = x

x1 = φx0 = φx

x2 = φx1 = φ2x

. . .

xt = φxt−1 = φtx.

This suggests to take

xt = ϕ(t, x) = φtx (2.4)

as the general solution of the first order linear homogenous difference equa-
tion (2.3). Actually, equation (2.4) provides a whole family of solutions
indexed by the starting value x ∈ R. To each value of x, there corre-
sponds a trajectory xt = ϕ(t, x) = φtx with corresponding forward orbit
O+(x) = {x, φx, φ2x, . . . }.

Note that the trajectories of two different solutions ϕ(t, c1) and ϕ(t, c2),
c1 6= c2, cannot cross. For suppose there exists τ such that ϕ(τ, c1) = ϕ(τ, c2),
then φτc1 = φτc2. This implies c1 = c2 because φ 6= 0. This contradicts the
assumption c1 6= c2.

The parameter x can be pinned down by using a single boundary con-
dition. A simple form of such a boundary condition requires, for example,
that xt takes a particular value c in some period t0. Thus, we require that
ϕ(t0, x) = c. In this case we speak of an initial value problem. The value of
x can then be retrieved by solving the equation xt0 = φt0x = c for x. This
leads to x = φ−t0c. The solution may then be written as

xt = ϕ(t, x) = φt−t0c = ϕ(t− t0, c).

Note that the solution depends on t − t0 and not on t or t0 separately. In
many instances we are given the value at t0 = 0 so that x = c.

Because φ 6= 0, we can iterate equation (2.3) also backwards in time:
x−t = φ−1x−t+1, t = 1, 2, . . . Thus, the solution xt = ϕ(t, x) = φtx holds for
all integers t ∈ Z with orbit O(x) = {. . . , φ−2x, φ−1x, x, φx, φ2x, . . .}.

Suppose that we are given two solutions of the homogenous equation,
(x

(1)
t ) and (x

(2)
t ). Then it is easy to verify that any linear combination of the

two solutions, a1(x
(1)
t ) + a2(x

(2)
t ), a1, a2 ∈ R, is also a solution. This implies

that the set of all solutions or orbits of the homogenous equation forms a
linear space or vector space. In order to find out the dimension of this linear
space and its algebraic structure, it is necessary to introduce the following
three important definitions.
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Definition 2.1 (Linear Dependence, Linear Independence). The r sequences
(x(1)), (x(2)), . . . , (x(r)) with r ≥ 2 are said to be linearly dependent for t ≥ t0
if there exist constants a1, a2, . . . , ar ∈ R, not all zero, such that

a1x
(1)
t + a2x

(2)
t + · · ·+ arx

(r)
t = 0, for all t ≥ t0.

This definition is equivalent to saying that there exists a nontrivial linear
combination of the solutions which is zero. If the solutions are not linearly
dependent, they are said to be linearly independent.

Definition 2.2 (Fundamental Set of Solutions). A set of r linearly inde-
pendent solutions of the homogenous equation is called a fundamental set of
solutions.

Definition 2.3 (Casarotian Matrix). The Casarotian matrix C(t) of (x(1)),
(x(2)), . . . , (x(r)) with r ≥ 1 is defined as

C(t) =


x

(1)
t x

(2)
t . . . x

(r)
t

x
(1)
t+1 x

(2)
t+1 . . . x

(r)
t+1

...
...

. . .
...

x
(1)
t+r−1 x

(2)
t+r−1 . . . x

(r)
t+r−1

 .

These definitions allow us to the tackle the issue of the dimension of
the linear space given by all solutions to the homogenous first order linear
difference equation.

Theorem 2.1 (Dimension of Linear First Order Equation). The set of solu-
tions to the homogenous first order linear difference equation (2.3) is a linear
space of dimension one.

Proof. Suppose we are given two linearly independent solution (x(1)) and
(x(2)). Then according to Definition 2.1, for all constants a1 and a2, not both
equal to zero,

a1x
(1)
t + a2x

(2)
t 6= 0

a1x
(1)
t+1 + a2x

(2)
t+1 6= 0.

Inserting in the second inequality φx
(1)
t for x

(1)
t+1 and φx

(2)
t for x

(2)
t+1 leads to

a1x
(1)
t + a2x

(2)
t 6= 0

a1φx
(1)
t + a2φx

(2)
t 6= 0
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or equivalently (
x

(1)
t x

(2)
t

φx
(1)
t φx

(2)
t

)(
a1

a2

)
6= 0

Since this must hold for any a1, a2, not both equal to zero, the determinant
of the Casarotian matrix (see Definition 2.3)

det C(t) = det

(
x

(1)
t x

(2)
t

φx
(1)
t φx

(2)
t

)

must be nonzero. However, det C(t) = φx
(1)
t x

(2)
t −φx

(1)
t x

(2)
t = 0. This is a con-

tradiction to the initial assumption. Thus, there can only be one independent
solution.

The only independent solution is therefore given by (2.4). In Section 2.4
we will give a general proof and show that the dimension of the linear space
generated by the solutions to the homogenous equation of order p is p.

Consider now two solutions of the nonhomogeneous difference equation
(2.2), (x

(1)
t ) and (x

(2)
t ), then, as can be easily verified, (x

(1)
t )− (x

(2)
t ) satisfies

the homogenous equation (2.3). This fact is called the superposition princi-

ple.1 The superposition principle implies that x
(1)
t − x

(2)
t = φtx which leads

to the following theorem.

Theorem 2.2 (Superposition Principle). Every solution, ϕ(t, x), of the first
order nonhomogeneous affine difference equation (2.2) can be represented as

the sum of the general solution of homogenous equation (2.3), x
(g)
t , and a

particular solution to the nonhomogeneous equation, x
(p)
t :

xt = x
(g)
t + x

(p)
t . (2.5)

The proof of this theorem is easily established and is left as an exercise to
the reader. In the case of a first order equation x

(g)
t = φtx. The Superposition

Principle then implies that the solution of the first order equation is given
by:

xt = φtx+ x
(p)
t .

1The superposition principle means that the net response of xt caused by two or more
stimuli is the sum of the responses which would have been caused by each stimulus in-
dividually. In the first order case one stimulus comes from the general solution to the
homogeneous equation, the other from the particular solution to the nonhomogeneous
equation.
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Below we will discuss how to obtain a particular solution. We will also
see subsequently that this principle extends to higher order equations and
linear systems. The Superposition Principle thus delivers a general recipe for
solving linear difference equations in three steps:

1. Find the general solution of the homogeneous equation x(g). This is
usually a technical issue that can be resolved mechanically.

2. Find a particular solution to the nonhomogeneous equation x(p). This
step is usually more involved and requires additional (economic) ar-
guments. For example, we might argue that if the forcing variable zt
remains bounded then also xt should remain bounded.

3. The Superposition Principle (see Theorem 2.2) then delivers the general
solution of the nonhomogeneous equation as the sum of x(g) and x(p).
However, this solution still depends through x(g) on some constants.
To pin down the solution uniquely and therefore solving the boundary
value problem requires additional conditions. These conditions can
come in the form of initial values (starting values) or in the form of
requirements that the solution must obey some qualitative feature. A
typical feature in this context is boundedness, a condition which usually
can be given an economic underpinning.

Before continuing with the theoretical analysis consider the following ba-
sic example.

Amortization of a Loan

One of the simplest setting in economics where a difference equation arises
naturally, is compound interest calculation. Take, for example, the evolution
of debt. Denote by Dt the debt outstanding at the beginning of period t,
then the debt in the subsequent period t+ 1, Dt+1, is obtained by the simple
accounting rule:

Dt+1 = Dt + rDt − Zt = (1 + r)Dt − Zt (2.6)

where rDt is the interest accruing at the end of period t. Here we are using for
simplicity a constant interest rate r. The debt contract is serviced by paying
some amount Zt at the end of period t. This payment typically includes a
payment for the interest and a repayment of the principal. Equation (2.6)
constitutes a linear nonhomogeneous first order difference equation with φ =
1 + r.
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Given the initial debt at the beginning of period 0, D0, the amount of
debt outstanding in subsequent periods can be computed recursively using
the accounting rule (2.6):

D1 = (1 + r)D0 − Z0

D2 = (1 + r)D1 − Z1 = (1 + r)2D0 − (1 + r)Z0 − Z1

. . .

Dt+1 = (1 + r)t+1D0 − Zt − (1 + r)Zt−1 − · · · − (1 + r)tZ0

= (1 + r)t+1D0 −
t∑
i=0

(1 + r)iZt−i

Note how Dt+1 is determined as the sum of two parts: (1 + r)t+1D0 and
−
∑t

i=0(1 + r)iZt−i. The first expression thereby corresponds to the general
solution of the homogeneous equation and the second one to a particular
solution of the nonhomogeneous equation in accordance with Theorem 2.2.2

As the initial value of the debt is given, this value naturally pins down the
parameter c to equal D0.

If the repayments Zt are constant over time and equal to Z, as is often
the case, we can bring Z outside the summation sign and use the formula for
geometric sums to obtain:

Dt+1 = (1 + r)t+1D0 −
(
(1 + r)t+1 − 1

) Z
r
.

Suppose that the debt must be completely repaid by the beginning of period
T + 1, then the corresponding constant period payment Z can be calculated
by setting DT+1 = 0 in the above equation and solving for Z.3 This gives:

Z =
r

1− (1 + r)−T−1
D0.

Note that the payment Z required to pay back the debt diminishes with
T. If T approaches infinity Z equals rD0. In this case the payment is just
equal to interest accruing in each period so that there is no repayment of the
principal. In this case the debt is never paid back and equals the initial debt
D0 in each period. If the payment Z exceeds rD0, the debt is repaid in a
finite amount of time.

2The reader is invited to check that the second expression is really a solution to the
nonhomogeneous equation.

3The repayments are, of course, only constant as long as Dt > 0. Once the debt is paid
back fully, payments cease and Z = 0 from then on.
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Suppose that instead of requiring that the debt must be zero at some
point in time (including infinity), we impose the condition that the present
discounted value of the debt must be non-positive as T goes to infinity:

lim
T→∞

DT+1

(1 + r)T+1
≤ 0. (2.7)

This condition is referred to as the no Ponzi game (NPG) condition in eco-
nomics. A Ponzi game is a scheme where all principal repayments and interest
payments are rolled over perpetually by issuing new debt.4 If the above limit
is positive, the borrower would be able to extract resources (in present value
terms) from the lenders (See O’Connell and Zeldes (1988) and the literature
cited therein for an assessment of the significance of the NPG condition in
economics). Given the difference equation for the evolution of debt, the NPG
condition with constant payment per period is equivalent to:

lim
T→∞

DT+1

(1 + r)T+1
= lim

T→∞
D0 −

(
1− (1 + r)−T−1

) Z
r

= D0 −
Z

r
≤ 0

which implies that Z ≥ rD0. Thus, the NPG condition holds if the constant
repayments Z are at least as great as the interest.

2.2 Solutions of First Order Affine Difference

Equations

This section discusses a more systematic way of finding a particular solution
to the first order affine difference equation (2.2). For this purpose insert
recursively equation (2.2) into itself:

xt = φxt−1 + zt

xt = φ(φxt−2 + zt−1) + zt = φ2xt−2 + φzt−1 + zt

. . .

xt = φtx0 + φt−1z1 + φt−2z2 + · · ·+ φzt−1 + zt

= φtx0 +
t−1∑
j=0

φjzt−j

4Charles Ponzi was an Italian immigrant who promised to pay exorbitant returns to
investors out of an ever-increasing pool of deposits. A historic account of Ponzi games can
be found in Kindleberger (1978).
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Taking the absolute value of the difference between xt and the second term
of the right hand side of the equation leads to:∣∣∣∣∣xt −

t−1∑
j=0

φjzt−j

∣∣∣∣∣ =
∣∣φtx0

∣∣ = |φt| |x0|

When there is a starting period as in the example of the amortization of a
loan, say period 0 without loss of generality, we stop the backwards iteration
at this period and take x

(p)
t =

∑t−1
j=0 φ

jzt−j as the particular solution. However
in many instances there is no natural starting period so that it makes sense
to continue the above iteration into the infinite remote past. Given that |φt|
vanishes as t→∞ if and only if |φ| < 1, this suggests to consider

x
(b)
t =

∞∑
j=0

φjzt−j (2.8)

as a particular solution to the equation (2.2). The superscript (b) indicates
that the solution was obtained by iterating the difference equation backward
in time. For this to be a meaningful choice, the infinite sum must be well–
defined. This is, for example, the case if {zt} is a bounded sequence. In
particular, if zt is constant and equal to z, the above particular solution
becomes

x
(b)
t =

∞∑
j=0

φjz =
z

1− φ
, |φ| < 1,

which is just the steady state solution described in Section 1.2.
The requirement that zt remains bounded can, for example, be relaxed if

zt itself satisfies the homogenous difference equation zt = ψzt−1 which implies
that zt = ψtc for some c 6= 0. For |ψ| > 1, zt is unbounded. Inserting this
into equation (2.8) then leads to

x
(b)
t =

∞∑
j=0

φjψt−jc = ψt
∞∑
j=0

(
φ

ψ

)j
c.

The infinite sum converges if and only if |φ/ψ| < 1. This shows that besides
the stability condition |φ| < 1, some additional requirements with respect

to the sequence of the exogenous variable are necessary to render x
(b)
t in

equation (2.8) a meaningful particular solution. Usually, we assume that zt
is bounded.

Consider next the case |φ| > 1. In this situation the above iteration is no

longer successful because x
(b)
t in equation (2.8) is not well–defined even when
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zt is constant. A way out of this problem is to consider the iteration forward
in time instead of backward in time:

xt = φ−1xt+1 − φ−1zt+1

= φ−1
(
φ−1xt+2 − φ−1zt+2

)
− φ−1zt+1 = φ−2xt+2 − φ−2zt+2 − φ−1zt+1

. . .

= φ−hxt+h − φ−1

h∑
j=1

φ−j+1zt+j for h ≥ 1.

Taking the absolute value of the difference between xt and the second term
on the right hand side of the equation leads to:

∣∣∣∣∣xt + φ−1

h∑
j=1

φ−j+1zt+j

∣∣∣∣∣ =
∣∣φ−hxt+h∣∣ = |φ−h| |xt+h|.

As the economy is expected to live forever, there is no end period and the
forward iteration can be carried out indefinitely into the future. Because
|φ| > 1, the right hand side of the equation converges to zero as h → ∞,
provided that xt+h remains bounded. This suggests the following particular
solution:

x
(f)
t = −φ−1

∞∑
j=1

φ−j+1zt+j, |φ| > 1, (2.9)

where the superscript (f) indicates that the solution was obtained by iter-
ating the difference equation forward in time. For this to be a meaningful
choice, the infinite sum must be well-defined. This will be guaranteed if, for
example, zt remains bounded.

When |φ| = 1 neither the backward nor the forward iteration strategy
leads to a sensible particular solution even when zt is constant and equal to
z 6= 0. Either an equilibrium point does not exist as in the case φ = 1 or the
equilibrium point exists as is the case for φ = −1, but xt oscillates forever
between x0 and −x0 + z so that the equilibrium point is unstable. Most of
the time, we restrict ourself to the hyperbolic case and disregard the case
|φ| = 1.

To summarize, assuming that {zt} is bounded, the first order linear dif-
ference equation (2.2) led us to consider the following two representations of
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the general solutions:

xt = φtx+ x
(b)
t , whereby x

(b)
t =

∞∑
j=0

φjzt−j

xt = φtx+ x
(f)
t , whereby x

(f)
t = −φ−1

∞∑
j=1

φ−j+1zt+j

Note that these equations imply that x = x0−x(b)
0 , respectively x = x0−x(f)

0 .
Depending on the value of φ, we can distinguish the following three cases:

|φ| < 1: the backward solution is asymptotically stable in the sense that xt
approaches x

(b)
t as t→∞. Any deviation of xt from x

(b)
t vanishes over

time, irrespective of the value chosen for x, because limt→∞ |xt−x(b)
t | =

limt→∞ |φtx| = |x| limt→∞ |φt| = 0. The forward solution, usually,

makes no sense because x
(f)
t is not well–defined despite the fact that

the forcing variable zt is bounded.

|φ| > 1: both solutions have an explosive behavior due to the term φt. Even

small deviations from either x
(b)
t or x

(f)
t will grow without bounds.

There is, however, one and only one solution which remains bounded.
It is given by x = 0 which implies that xt always equals its equilibrium
value x

(f)
t .

|φ| = 1: neither the backward nor the forward solution converge for constant
zt 6= 0.

Which solution is appropriate depends on the nature of the economic prob-
lem at hand. In particular, the choice of the boundary condition requires
some additional thoughts and cannot be determined on general grounds. As
the exercises below demonstrate, the nature of the expectations formation
mechanism is crucial in this respect.

2.3 Examples of First Order Linear Differ-

ence Equations

2.3.1 The simple Cobweb Model

The Cobweb model, originally introduced by Moore (1914) to analyze the
cyclical behavior of agricultural markets, was one of the first dynamic models
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in economics. It inspired an enormous empirical as well as theoretical litera-
ture. Its analysis culminated in the introduction of rational expectations by
Muth (1961). The model, in its simplest form, analyzes the short–run price
fluctuations in a single market where, in each period, the price level is de-
termined to equate demand and supply. Their logarithms are denoted by Dt

and St, respectively. The good exchanged on this market is not storable and
is produced with a fixed production lag of one period. The supply decision
of producers in period t− 1 is based on the price they expect to get for their
product when the enter the market in period t. Denoting the logarithm of
the price level in period t by pt and assuming a negatively sloped demand
curve and a positively sloped supply curve, the simple Cobweb model can be
summarized by the following four equations:5

Dt = −βpt, β > 0 (demand)

St = γpet + ut, γ > 0 (supply)

St = Dt (market clearing)

pet = pt−1 (expectations formation)

where ut denotes a supply shock. In agricultural markets ut typically repre-
sents weather conditions or breeding conditions in the case of animals.

Given the naive expectations formation, pet = pt−1, the model can be
solved to yield a linear first order difference equation in pt:

pt = −γ
β
pt−1 −

ut
β

= φpt−1 + zt (2.10)

where φ = − γ
β

and zt = −ut
β

. Due to the negative value of φ, the price oscil-
lates: high prices tend to be followed by low prices which are again followed
by high prices. These price oscillations translate into corresponding quantity
oscillations. If ut is independent of time and equal to u, the equilibrium price
p∗ of the Cobweb model can be computed as follows:

p∗ = −γ
β
p∗ − u

β
⇒ p∗ =

−u
β + γ

(2.11)

If demand is relatively elastic compared to supply, i.e. if β > γ, 0 < φ < 1
and the equilibrium p∗ is asymptotically stable.

The Figure 2.1 depicts several possible cases depending on the relative
slopes of supply and demand. In the first panel φ = −0.8 so that we have an
asymptotically stable equilibrium. Starting at p0, the price approaches the
steady state by oscillating around it. In the second panel β = γ implying φ =

5The logarithm of the price level is taken to ensure a positive price level.
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Figure 2.1: Price dynamics in the cobweb model

−1 so that, independently of the starting value, the price oscillates forever
between p0 and p1. In the third panel, we have an unstable equilibrium.
Starting at p0 6= p∗, pt diverges.

2.3.2 The Solow Growth Model

Although this chapter only deals with linear or affine difference equations, the
local behavior of nonlinear difference equations can be studied by linearizing
the difference equation around its steady state and applying Theorem 1.2.
A classic example in this respect is the famous Solow growth model (see
Solow (1956)). A simple version of this model describes a closed economy
with no technical progress. Output in period t, denoted by Yt, is produced
with two essential production factors: capital, Kt, and labor, Lt. Production
possibilities of this economy in period t are described by a neoclassical pro-
duction function Yt = F (Kt, Lt). This production function is defined on the
nonnegative orthant of R2 and is characterized by the following properties:

� F is twice continuously differentiable;
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� strictly positive marginal products, i.e. ∂F (K,L)
∂K

> 0 and ∂F (K,L)
∂L

> 0;

� diminishing marginal products, i.e. ∂2F (K,L)
∂K2 < 0 and ∂2F (K,L)

∂L2 < 0;

� F has constant returns-to-scale, i.e. F (λK, λL) = λF (K,L) for all
λ > 0;

� F satisfies the Inada conditions:

lim
K→∞

∂F (K,L)

∂K
= 0, lim

L→∞

∂F (K,L)

∂L
= 0,

lim
K→0

∂F (K,L)

∂K
= ∞, lim

L→0

∂F (K,L)

∂L
=∞.

The Inada conditions are usually not listed among the properties of a neoclas-
sical production function, however, they turn out to be necessary to guar-
antee a strictly positive steady state. The classic example for a produc-
tion function with these properties is the Cobb-Douglas production function:
F (K,L) = AK(1−α)Lα, A > 0, 0 < α < 1. The above properties have two
important implications summarized by the following lemmata.

Lemma 2.1 (Essential Inputs). Let F be a neoclassical production func-
tion as described above then both inputs are essential, i.e. F (K, 0) = 0 and
F (0, L) = 0.

Proof. Suppose that Y →∞ as K →∞ then L’Hôpital’s rule together with
the Inada conditions imply

lim
K→∞

Y

K
= lim

K→∞

∂Y/∂K

1
= lim

K→∞

∂Y

∂K
= 0.

If on the other hand, Y remains finite when K → ∞, we immediately also
get

lim
K→∞

Y

K
= 0.

The constant returns to scale assumption then implies that, for L > 0 fixed,

lim
K→∞

Y

K
= lim

K→∞
F (1, L/K) = F (1, 0) = 0.

Using the constant returns to scale assumption again, we derive

F (K, 0) = KF (1, 0) = 0.

Thus, capital is essential. The proof that L is essential is analogous.
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Lemma 2.2. Let F be a neoclassical production function as described above
then output goes to infinity if either input goes to infinity, holding the other
input fixed.

Proof. Omitting the time subscripts, define k as the capital intensity, i.e.
k = K/L. The assumption of constant returns to scale then implies that

F (K,L) = LF (K/L, 1) = Lf(k) = Kf(k)/k

where f(k) = F (k, 1). Holding K > 0 fixed, L’Hôpital’s rule implies

lim
L→∞

F (K,L) = K lim
k→0

f(k)

k
= K lim

k→0
f ′(k) =∞

where we have used the result that capital is essential (see the previous
Lemma), i.e. that f(0) = 0. The last equality is a consequence of the Inada
conditions. The proof for limK→∞ F (K,L) = ∞, L > 0 fixed, is analogous.

Output can be used either for consumption, Ct, or investment, It:

Yt = Ct + It. (2.12)

The economy saves a constant fraction s ∈ (0, 1) of the output. Because
saving equals investment in a closed economy, we have

It = sYt. (2.13)

Investment adds to the existing capital stock which depreciates in each period
at a constant rate δ ∈ (0, 1):

Kt+1 = (1− δ)Kt + It = (1− δ)Kt + sYt = (1− δ)Kt + sF (Kt, Lt) (2.14)

Whereas capital is a reproducible factor of production, labor is a fixed factor
of production which is assumed to grow at the exogenously given constant
rate µ > 0:

Lt+1 = (1 + µ)Lt, L0 > 0 given. (2.15)

Starting in period 0 with some positive capital K0 > 0, the system con-
sisting of the two difference equations (2.14) and (2.15) completely describes
the evolution of the economy over time. A first inspection of the two equa-
tions immediately reveals that both labor and capital tend to infinity. Indeed,
as µ > 0 labor grows without bound implying according to Lemma 2.2 that
output also grows without bound. This is not very revealing if one is looking
for steady states and is interested in a stability analysis. In such a situation
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it is often advisable to look at the ratio of the two variables, in our case at
K/L. This has several advantages. First, the dimension of the system is
reduced to one. Second, and more importantly, the singularity at infinity is,
at least in the linear case, eliminated.6 Third, these ratios often have a clear
economic meaning making the economic interpretation of the results more
comprehensible.

We apply this device to the Solow model as described by equations (2.14)
and (2.15). Thus, dividing equation (2.14) by Lt+1 and making use of the
constant returns to scale assumption results in the fundamental equation of
the Solow model:

kt+1 =
Kt+1

Lt+1

=
1− δ
1 + µ

kt +
s

1 + µ
f(kt) = g(kt) (2.16)

where kt = Kt
Lt

is known as the capital intensity and f(kt) = F
(
Kt
Lt
, 1
)

. The

production function in terms of capital intensity inherits the properties of the
original production function: f ′(k) > 0 and f ′′(k) < 0, and limk→∞ f

′(k) =
0 and limk→0 f

′(k) = ∞. These properties also carry over to g with the
exception that limk→∞ g

′(k) = (1− δ)/(1 + µ) < 1.
The economy starts in period zero with an initial capital intensity k0 >

0. The nonlinear first order difference equation (2.16) together with the
initial condition uniquely determines the evolution of the capital intensity
over time, and consequently of all other variables in the model. Hence, by
solving the difference equation (2.16) for kt all other variables of the model
are determined as well.

Proposition 2.1. Given the assumptions of the Solow model, the fundamen-
tal Solow equation (2.16) has exactly two steady states k∗ = 0 and k∗ > 0.

Proof. The steady states must satisfy the nonlinear equation:

k∗ = g(k∗).

This equation implies

k∗ =
s

µ+ δ
f(k∗). (2.17)

6Technically speaking, this induces a new difference equation on the projective space.
In the two dimensional case, the projective space is defined as the set of rays through the
origin. As each ray crosses the unit circle twice, an equivalent definition is given as the
unit circle where opposite points are not distinguished. See Colonius and Kliemann (2014,
chapter 4) for details.
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Figure 2.2: Capital Intensity in the Solow Model

As f(0) = 0, k∗ = 0 is a steady state. From Figure 2.2 it becomes clear
that the Inada conditions together with concavity ensure the existence of a
unique strictly positive steady state k∗ > 0. In particular, the properties
g(0) = 0, limk→0 g

′(k) = ∞, limk→∞ g
′(k) = 1−δ

1+µ
< 1, and g′(k) > 0 ensure

that the function g is sufficiently steep at the origin and becomes eventually
flat enough to cross the 45-degree line once from above.

The steady state k∗ = 0 is of no economic significance. The asymptotic
stability of k∗ > 0 is easily established by observing that kt is monotonically
increasing for k0 ∈ (0, k∗) and monotonically decreasing for k0 > k∗. Thus, kt
converges monotonically to k∗ independently of the initial value k0 > 0. This
shows that k∗ > 0 is attracting. Monotonicity also implies stability because
for all ε > 0, taking δε = ε, |k0 − k∗| < δε implies |kt − k∗| < ε for all t ≥ 0.
Thus, k∗ > 0 is stable and therefore asymptotically stable. Another way to
establish this conclusion is to invoke Theorem 1.1. This also holds globally
when X is restricted to X = R+.

This fact can also be established by invoking Theorem 1.2. To do so, we
linearize equation (2.16) around the steady state k∗ > 0. This amounts to
take a first order Taylor approximation:

kt+1 ≈ k∗ +
∂g(k)

∂k

∣∣∣∣
k=k∗

(kt − k∗) (2.18)



2.3. EXAMPLES OF FIRST ORDER EQUATIONS 37

We can therefore study the local behavior of the nonlinear difference equa-
tion (2.16) around the steady state k∗ > 0 by investigating the properties of
the first order homogenous difference equation:

kt+1 − k∗ = φ (kt − k∗) (2.19)

where 0 < φ = ∂g(k)
∂k

∣∣∣
k=k∗

.

Proposition 2.2. 0 < φ = ∂g(k)
∂k

∣∣∣
k=k∗

< 1.

Proof. Note that g′(k) > 0 for all k > 0. Concavity of g implies that g(k)−
k∗ ≤ g′(k∗)(k − k∗) for all k > 0. Take k < k∗, then g(k) > k. Thus,
g(k) − k∗ < g′(k∗)(g(k) − k∗) < 0. Noting that g(k) − k∗ < 0 implies that
g′(k∗) < 1.

Starting in period zero with an initial capital intensity k0 > 0, the ap-
proximate solution to this initial value problem near the steady state is:

kt = k∗ + φt(k0 − k∗)

As 0 < φ < 1, the steady state k∗ is asymptotically stable, even exponentially
so.

2.3.3 A Model of Equity Prices

Consider an economy where investors have just two assets at their disposal.
The first one is a riskless government bond which pays a constant interest
rate r > 0 in each period. The second one is a common share which gives
the owner the right to a known dividend stream per share. The problem is
to determine the share price pt as a function of the future dividend stream
(dt+h)h=0,1,... and the interest rate r. As we abstract from uncertainty in
this example, arbitrage ensures that the return on both investments must be
equal. Given that the return on the investment in the share consists of the
dividend payment dt plus the expected price change pet+1 − pt, this arbitrage
condition yields:

r =
dt + pet+1 − pt

pt
⇔ pet+1 = (1 + r)pt − dt (2.20)

where pet+1 denotes the price expected to prevail in the next period. Assuming
that expectations of the investors are rational which is equivalent to assum-
ing perfect foresight in the context of no uncertainty, the above arbitrage
equation turns into a simple first order difference equation:

pt+1 = (1 + r)pt − dt (2.21)
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with φ = 1 + r and zt = −dt−1. Note that we are given no initial condition.
Instead, the purpose is to find a starting price (initial value) p0.

Whereas the general solution to the homogeneous equation is easily found
to be x

(g)
t = φtcf , for some cf ∈ R, the search for an appropriate particular

solution to the nonhomogeneous equation requires additional considerations.
Because φ = 1 + r > 1, we can disregard the backward solution as the
infinite sum will not converge for a constant dividend stream. Thus, we turn
to the forward solution x

(f)
t = −φ−1

∑∞
j=1 φ

−j+1zt+j (see equation (2.9)). We
therefore envision the following general solution to the difference equation
(2.21):

pt = (1 + r)tcf + x
(f)
t =

(
p0 − x(f)

0

)
(1 + r)t + x

(f)
t (2.22)

where x
(f)
t = (1 + r)−1

∑∞
j=0(1 + r)−jdt+j. Note that the forward solution is

only well-defined if the infinite sum converges. A sufficient condition for this
to happen is the existence of a finite index j0 such that |dt+j/(1 + r)j| < M j,
for j > j0 and some M < 1. This is guaranteed, in particular, by a constant
dividend stream dt+j = d, for all j = 0, 1, 2, . . .

The term (1+r)tcf is usually called the bubble term because its behavior

is unrelated to the dividend stream; whereas the term x
(f)
t is referred to as

the fundamentals because it is supposed to reflect the “intrinsic value” of the
share.

Remember that the purpose is to figure out the initial price of a share p0.
Take period 0 to be the current period and suppose that cf = p0 − x(f)

0 > 0.
This means that the current stock price is higher than what can be justified
by the future dividend stream. According to the arbitrage equation (2.20)
this high price (compared to the dividend stream) can only be justified by
an appropriate capital gain, i.e. an appropriate expected price increase in
the next period. This makes the price in the next period even more different
from the fundamentals which must be justified by an even greater capital
gain in the following period, and so on. In the end, the bubble term takes
over and the share price becomes almost unrelated to the dividend stream.
This situation is, however, not sustainable in the long run.7 Therefore, the
only reasonable current share price p0 is x

(f)
0 which implies that cf = 0. This

effectively eliminates the bubble term and is actually the only nonexplosive
solution. Thus, we have a unique (determinate) rational equilibrium solution.
This solution is

pt = x
(f)
t = (1 + r)−1

∞∑
j=0

(1 + r)−jdt+j (2.23)

7A similar argument applies to the case cf = p0 − x(f)
0 < 0.
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Thus, the price of a share always equals the present discounted value of the
corresponding dividend stream. Such a solution is reasonable in a situation
with no uncertainty and no information problems.

If dividends are expected to be constant and equal to d, the above equa-
tion simplifies to pt = d/r or pt/d = 1/r. pt/d is known as the price dividend
ratio and plays an important role in financial markets. In particular, it is in-
terpreted as an indicator for the over- respectively undervaluation of a share.

The above solution implies that the price immediately responds to any
change in the expected dividend stream. The effect of a change in dt+h, h =
0, 1, 2, . . . on pt is given by

∂pt
∂dt+h

= (1 + r)−h−1 h = 0, 1, . . .

Thus, the effect diminishes the further the change takes place in the future.
Alternatively, consider a permanent change in dividends, i.e. a change where
all dividends increase by some constant amount4d. The corresponding price
change 4pt equals:

4pt = (1 + r)−1

∞∑
j=0

(1 + r)−j4d =
4d
r

Similarly a proportional increase of all dividends would lead to the same
proportional increase in the share price. It also shows that relatively small
permanent changes in the dividends can lead to large fluctuations in the
share price. These “comparative” exercises demonstrate that the rational
expectations solution which eliminates the bubble term makes sense.

Cagan’s Model of Hyperinflation

In periods of hyperinflation the price level rises by more than 50 percent a
month. As these periods are usually rather short lived, they can serve as a
laboratory for the study of the relation between money supply and the price
level because other factors like changes in real output can be disregarded.
The model also serves to illustrate the implications of alternative expecta-
tions mechanisms, in particular the difference between adaptive and rational
expectations. Denoting by mt the logarithm of the money stock in period t
and by pt the logarithm of the price level in period t, the model first proposed
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and analyzed by Cagan (1956) consists of the following three equations.8

md
t − pt = α(pet+1 − pt), α < 0 (money demand)

ms
t = md

t = mt (money supply)

pet+1 − pt = γ(pt − pt−1), γ > 0 (adaptive expectations)

The first equation is a money demand equation in logarithmic form. It relates
the logged demand for the real money stock, md

t − pt, where the superscript
d stands for demand, to the rate of inflation expected to prevail in period
t+1, pet+1−pt, where the superscript e stands for expectation. This relation is
negative because households and firms want to hold less money if they expect
the real value of money to deteriorate in the next period due to high inflation
rates. Thus, α < 0. In this model, the central bank perfectly controls the
money stock and sets it independently of the development of the price level.
The model treats the logarithm of the supply of the money stock, ms

t , where
the superscript s stands for supply, as exogenous. The money stock injected
in the economy is completely absorbed by the economy so that in each point
in time the supply of money equals the demand of money. Combining the
first two equations, i.e. replacing md

t by mt in the first equation, leads to a
portfolio equilibrium condition. As we will see, the behavior of the model
depends crucially on the way in which expectations are formed. Following
the original contribution by Cagan, we assume that expectations are formed
adaptively, i.e. agents form their expectations by extrapolating past inflation.
The third equation postulates a very simple adaptive expectation formation
scheme: inflation expected to prevail in the next period is just proportional
to the current inflation. Thereby the proportionality factor γ is assumed
to be positive, meaning that expected inflation increases if current inflation
increases. Combining all three equations of the model and solving for pt, we
arrive at the following linear nonhomogeneous first order difference equation:

pt =
αγ

1 + αγ
pt−1 +

1

1 + αγ
mt = φpt−1 + zt (2.24)

where φ = αγ
1+αγ

and zt = 1
1+αγ

mt.

From our previous discussion we know that the general solution of this
difference equation is given as the sum of the general solution to the ho-
mogenous equation and a particular solution, p

(p)
t , to the nonhomogeneous

equation:

pt = φtc+ p
(p)
t

8See also the analysis in Sargent (1987).
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One particular solution can be found by recursively inserting into equation
(2.24):

p1 = φp0 + z1

p2 = φp1 + z2 = φ2p0 + φz1 + z2

. . .

pt = φtp0 + φt−1z1 + φt−2z2 + · · ·+ φzt−1 + zt

= φtp0 +
t−1∑
i=0

φizt−i

This is again an illustration of the superposition principle. The logged price
in period t, pt, is just the sum of two components. The first one is a function
of p0 whereas the second one is a weighted sum of past logged money stocks.
In economics there is no natural starting period so that one may iterate the
above equation further, thereby going back into infinite remote past:

pt = lim
i→∞

φipt−i +
∞∑
i=0

φizt−i

From a mathematical point of view this expression only makes sense if the
limit of the infinite sum exists. Thus, additional assumptions are required.
Suppose that logged money remained constant, i.e. mt = m < ∞ for all
t, then the logic of the model suggests that the logged price level should
remain finite as well. In mathematical terms this means that

∑∞
i→∞ φ

i should
converge. This is, however, a geometric sum so that convergence is achieved
if and only if

|φ| =
∣∣∣∣ αγ

1 + αγ

∣∣∣∣ < 1. (2.25)

Assuming that this stability condition holds, the general solution of the dif-
ference equation (2.24) implied by the Cagan model is:

pt = φtc+
∞∑
i=0

φizt−i (2.26)

where the constant c can be computed from an initial value condition.9 Such
an initial condition arises naturally because the formation of adaptive expec-
tations requires the knowledge of the price from the previous period which
can then serve as an initial condition.

9Note that the model assumptions α < 0 and γ > 0 are not sufficient to guarantee the
stability condition.
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The stability condition therefore has important consequences. First, irre-
spective of the value of c, the first term of the solution (the general solution
to the homogenous equation), φtc, becomes less and less important as time
unfolds. Thus, for a large enough t, the logged price level will be dominated
by the particular solution to the nonhomogeneous equation,

∑∞
i=0 φ

izt−i. In
this infinite sum, the more recent values of the money stock are more impor-
tant for the determination of the price level. The importance of past money
stocks diminishes as one goes further back into the past. Third, suppose
that money stock is increased by a constant percentage point, ∆m, in every
period, then the effect on the logged price level, ∆pt is given by

∆pt =
∞∑
i=0

φi
(

1

1 + αγ
∆m

)
=

1

1− φ
1

1 + αγ
∆m = ∆m.

Thus, the price level moves up by the same percentage point. Such a once-
and-for-all change is termed a permanent change. In contrast a transitory
change is a change which occurs only once. The effect of a transitory change
of mt by ∆m in period t on the logged price level in period t + h for some
h ≥ 0 is given by

∆pt+h = φh
1

1 + αγ
∆m =

(
αγ

1 + αγ

)h
1

1 + αγ
∆m

The values ∆pt+h
∆m

seen as a function of h ≥ 0 are called the impulse response
function. It gives the reaction of the logged price level over time to a transi-
tory change of the logged money stock. As is clear from the above formula,
the stability condition implies that the effect on the logged price level dies
out exponentially over time. Usually the impulse response function is plotted
as a function of h as in Figure 2.3.

The character of the model changes drastically if rational expectations are
assumed instead of adaptive expectations. In the context of a deterministic
model this amounts to assuming perfect foresight. Thus, the third equation
of the model is replaced by

pet+1 = pt+1 (2.27)

With this change the new difference equation becomes:

pt+1 =
α− 1

α
pt +

mt

α
= φpt + zt (2.28)

with zt = mt/α. As φ = α−1
α

> 1, the stability condition is violated. One can
nevertheless find a meaningful particular solution of the nonhomogeneous
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Figure 2.3: Impulse response function of the Cagan model with adaptive
expectations taking α = −0.5 and γ = 0.9

equation by iterating the difference equation forwards in time instead of
backwards:

pt = φ−1pt+1 − φ−1zt

= φ−1
(
φ−1pt+2 − φ−1zt+1

)
− φ−1zt = φ−2pt+2 − φ−2zt+1 − φ−1zt

. . .

= φ−hpt+h − φ−1

h−1∑
i=0

φ−izt+i for h > 0

The logged price level in period t, pt, depends on the expected logged price
level in the future, pt+h, and on the development of logged money expected
to be realized in the future. Because the economy is expected to live forever,
this forward iteration is carried on into the infinite future to yield:

pt = lim
h→∞

φ−hpt+h − φ−1

∞∑
i=0

φ−izt+i

As 0 < φ−1 < 1, the limit and the infinite sum are well defined, provided
that the logged money stock remains bounded. Under the assumption that
the logged money stock is expected to remain bounded, the economic logic
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of the model suggests that the logged price level should remain bounded as
well. This suggests the following particular solution to the nonhomogeneous
equation:

p
(p)
t = −φ−1

∞∑
i=0

φ−izt+i

by the superposition principle the general solution of the nonhomogeneous
difference equation (2.28) is:

pt = φtc+ p
(p)
t = φtc− φ−1

∞∑
i=0

φ−izt+i (2.29)

Due to the term φtc, the logged price level grows exponentially without bound
although the logged money stock may be expected to remain bounded, unless
c = 0. Thus, setting c = 0 or equivalently p0 = p

(p)
0 guarantees a nonexplosive

rational expectations equilibrium.

To summarize, the Cagan model suggests the following two solutions:

pt = φtcb + p
(b)
t , whereby p

(b)
t =

∞∑
i=0

φizt−i

pt = φtcf + p
(f)
t , whereby p

(f)
t = −φ−1

∞∑
i=0

φ−izt+i

Which of the two solutions is appropriate depends on the value of φ. If |φ| <
1 only the first solution delivers sensible paths for pt, i.e. paths which do not
explode for bounded values of zt. However, we have a whole family of paths
parameterized by the constant cb. Only when we chose a particular initial
value for pt0 for some t0, or equivalently a value for cb, will the price path be
uniquely determined. In the case |φ| > 1 which is implied by the assumption
of rational expectations, only the second solution is meaningful because it
delivers a well-defined particular solution for bounded zt’s. However, the
general solution to the homogenous equation implies an exploding price level
except for cf = 0. Thus, there is only one non-exploding solution in this case:

pt = p
(f)
t . The price level therefore equals in each period its steady state level.

The assumption of rational expectations together with the assumption that
a bounded forcing variable should lead to a bounded price path pinned down
a unique solution. Thus, the price level is determined without the need of
an initial condition.
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2.4 Difference Equations of Order p

We next turn to the general case represented by equation (2.1). As can be

easily verified if x
(1)
t and x

(2)
t are two particular solutions of the nonhomoge-

neous equation, x
(1)
t − x

(2)
t is a solution to the homogeneous equation:

xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p, φp 6= 0. (2.30)

Thus, the superposition principle stated in Theorem 2.2 also holds in the
general case: the general solution to the nonhomogeneous equations can
be represented as the sum of the general solution to the homogeneous and
a particular solution to the nonhomogeneous equation. Thus, we begin the
analysis of the general case by an investigation of the homogeneous equation.

2.4.1 Homogeneous Difference Equation of Order p

In order to find the general solution of the homogeneous equation, we guess
that it will be of the same form as in the first order case, i.e. of the form
λtc, c 6= 0. Inserting this guess into the homogeneous equation (2.30), we get:

λtc = φ1λ
t−1c+ φ2λ

t−2c+ · · ·+ φpλ
t−pc

which after cancelling out c, dividing by λt and substituting z for 1
λ

leads to:

1− φ1z − φ2z
2 − · · · − φpzp = 0 (2.31)

This equation is called the characteristic equation of the homogeneous equa-
tion (2.30). Thus, in order for λtx to be a solution to the homogeneous
equation z = 1

λ
must be a root to the characteristic equation (2.31). These

roots are called the characteristic roots. Note that the assumption φp 6= 0
implies that none of the characteristic roots is equal to zero.

From the Fundamental Theorem of Algebra we know that there are p,
possibly complex, roots to the characteristic equation. Denote these roots
by z1, . . . , zp and their corresponding λ′s by λ1, . . . , λp. To facilitate the
discussion consider first the standard case where all p roots are distinct.

distinct roots

In this case we have the following theorem.

Theorem 2.3 (Fundamental Set for equation of order p). If all the roots of
the characteristic equation are distinct, the set {λt1, . . . , λtp} forms a funda-
mental set of solutions.
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Proof. It suffices to show that det C(t) 6= 0 where C(t) is the Casarotian
matrix of {λt1, . . . , λtp}.

det C(t) = det


λt1 λt2 . . . λtp
λt+1

1 λt+1
2 . . . λt+1

p
...

...
. . .

...

λt+p−1
1 λt+p−1

2 . . . λt+p−1
p



= λt1λ
t
2 . . . λ

t
p det


1 1 . . . 1
λ1 λ2 . . . λp
...

...
. . .

...

λp−1
1 λp−1

2 . . . λp−1
p


This second matrix is called the Vandermonde matrix whose determinant
equals

∏
1≤i<j≤p(λj − λi) which is different from zero because the roots are

distinct. Thus, det C(t) 6= 0, because the roots are also different from zero.

The above Theorem thus implies that the general solution to the homo-
geneous equation x

(g)
t is given by

x
(g)
t = λt1c1 + λt2c2 + · · ·+ λtpcp (2.32)

where c1, . . . , cp are given constants yet to be determined from boundary
conditions. Using the same technique as in the proof of Theorem 2.1, it is
easy to demonstrate that the set of solutions forms a linear space of dimension
p.

multiple roots

When the roots of the characteristic equation are not distinct, the situa-
tion becomes more complicated. Denote the r distinct roots by z1, · · · , zr,
r < p, and their corresponding multiplicities by m1, · · · ,mr. Writing the
homogeneous difference equation in terms of the lag operator leads to

(1− φ1L− · · · − φpLp)xt
= (1− λ1L)m1 (1− λ2L)m2 · · · (1− λrL)mr xt = 0 (2.33)

where L denotes the lag operator10 and λi, 1 ≤ i ≤ r, equals 1
zi

. In order to
find the general solution, we will proceed in several steps. First note if ψt is
a solution to

(1− λiL)mi ψt = 0 (2.34)

10The lag or shift operator transforms a sequence {xt} into {xt−1}, i.e. Lxt = xt−1.
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it is also a solution to (2.33). Second, Gi = {λti, tλti, t2λti, · · · , tmi−1λti} is
a fundamental set of solutions for equation (2.34). Before we prove this
statement in Lemma 2.4, we need the following lemma.

Lemma 2.3. For all k ≥ 1

(1− L)kts = 0, 0 ≤ s < k

Proof. The application of the operator 1 − L on ts leads to a polynomial of
degree s− 1, because the term ts cancels in (1−L)ts = ts− (t− 1)s and only
terms of degree smaller than s remain. Applying 1 − L again reduces the
degree of the polynomial again by one. Finally, (1−L)sts leads to a constant.
Thus, (1− L)s+1ts = 0. This proves the lemma because further applications
of 1− L will again result in zero.

Lemma 2.4. The set Gi = {λti, tλti, t2λti, · · · , tmi−1λti} represents a funda-
mental set of solutions to the equation (2.34).

Proof. Take s, 1 ≤ s ≤ mi − 1, then

(1− λiL)mi (tsλti) = λti(1− L)mi(ts) = 0

because (1−L)mits = 0 according to Lemma 2.3.11 Therefore tsλti is a solution
to (2.34). The set Gi is linearly independent because the set {1, t, t2, · · · , tmi−1}
is linearly independent.

It is then easily seen that G =
⋃r
i=1 Gi is a fundamental set of solutions

to the equation (2.33). Thus, the general solution can be written as

xt =
r∑
i=1

(
ci0 + ci1t+ ci2t

2 + · · ·+ ci,mi−1t
mi−1

)
λti (2.35)

where ci0, . . . , ci,mi , i = 1, . . . , r, are given constants yet to be determined
from boundary conditions. As before, the set of solutions forms a linear
space of order p because

∑r
i=1mi = p.

2.4.2 Nonhomogeneous Equation of Order p

As in the case of homogeneous difference equations of order one, the set
of all solutions forms a linear space. The dimension of this space is given
by the order of the difference equation, i.e. by p. Consider two solutions,

11Here we made use of the relation P (L)(λtg(t)) = λtP ((λ−1L))g(t) where P (L) is a lag
polynomial and g is any discrete function.
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x(1) and x(2), of the nonhomogeneous equation. It is easy to verify that
x(1) − x(2) is then a solution to the homogeneous equation. This implies
that the superposition principle also applies to nonhomogeneous equations
of order p greater than one. Thus the general solution of the nonhomogeneous
equation can be written as before as

xt = x
(g)
t + x

(p)
t

where x
(g)
t is the general solution to the homogeneous equation given by equa-

tion (2.35) and x
(p)
t is a particular solution to the nonhomogeneous equation.

In the search for a particular solution, the same ideas as in first order case
can be used. If the nonhomogeneous part is constant, i.e. zt = z, the steady
state, if it exists, qualifies for a particular solution to the nonhomogeneous
equation. If the nonhomogeneous part depends on time, a particular solution
can be found by iterating the equation backwards and/or forwards depending
on the location of the roots. This will become clear by analyzing the examples
in section 2.4.4.

2.4.3 Limiting Behavior of Solutions

Before turning to some economic examples, we classify to the qualitative be-
havior of the solutions. In particular, we will explore the stability properties
of the steady states and the limiting behavior of the solutions, i.e. the behav-
ior when time goes to infinity. The analysis can be reduced to the discussion
of second order homogenous equations:

xt − φ1xt−1 − φ2xt−2 = 0, φ2 6= 0. (2.36)

Higher order equations will add no new qualitative features. Assuming that
1−φ1−φ2 6= 0, the unique fixed point of this homogenous equation is 0. The
corresponding characteristic equation is given by the quadratic equation:

1− φ1z − φ2z
2 = 0.

The solutions of this equation are given by the familiar formula:

z1,2 = −φ1 ±
√
φ2

1 + 4φ2

2φ2

.

Or in terms of λ = 1
z
:

λ1,2 =
φ1 ±

√
φ2

1 + 4φ2

2
. (2.37)

To understand the qualitative behavior of xt, we distinguish three cases:
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λ1 and λ2 are real and distinct: The general solution is given by

xt = λt1c1 + λt2c2 = λt1

[
c1 +

(
λ2

λ1

)t
c2

]

Suppose without loss of generality that |λ1| > |λ2| so that
(
λ2
λ1

)t
→ 0 as

t→∞. This implies that the behavior of xt is asymptotically governed
by the larger root λ1:

lim
t→∞

xt = lim
t→∞

λt1c1

Depending on the value of λ1, six different cases emerge:

1. λ1 > 1: λt1c1 diverges to ∞ as t → ∞. The fixed point zero is
unstable.

2. λ1 = 1: λt1c1 remains constant and xt approaches c1 asymptoti-
cally. Starting the system with initial conditions x1 = x0 = x, x
arbitrary, which is equivalent to c1 = x and c2 = 0, xt will remain
at this value x forever.

3. 0 < λ1 < 1: λt1c1 decreases monotonically to zero. Zero is an
asymptotically stable fixed point.

4. −1 < λ1 < 0: λt1c1 oscillates around zero, alternating in sign, but
converges to zero. Zero is again an asymptotically stable fixed
point.

5. λ1 = −1: λt1c1 alternates between the values c1 and −c1. Thus,
the sequence (xt) will have two accumulation points c1 and −c1.

6. λ1 < −1: c1λ
t
1 alternates in sign, but diverges in absolute value

to ∞. The fixed point zero is unstable.

The behavior of xt in all six cases is illustrated in Figure 2.4.

equal roots λ = λ1 = λ2: According to (2.35) the solution is given by: xt =
(c1 + c2t)λ

t. Clearly, if λ ≥ 1, xt diverges monotonically; or, if λ ≤ −1,
xt diverges alternating signs. For |λ| < 1, the solution converges to zero,
because limt→∞ tλ

t = 0.

complex roots: The two roots appear as complex conjugate pairs and may
be written as λ1 = α+ıβ and λ2 = α−ıβ with β 6= 0. In terms of polar
coordinates the two roots may alternatively be written as λ1 = reıθ,
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respectively λ2 = re−ıθ, where r =
√
α2 + β2 and θ = tan−1

(
β
α

)
. The

solution is then given by

xt = λt1c1 + λt2c2 = (α + ıβ)tc1 + (α− ıβ)tc2

= rteıθtc1 + rte−ıθtc2

= rt [c1 (cos(θt) + ı sin(θt)) + c2 (cos(θt)− ı sin(θt))]

= rt [(c1 + c2) cos(θt) + ı(c1 − c2) sin(θt)]

Since xt must be a real number, c1 + c2 must also be real whereas
c1 − c2 must be purely imaginary. This implies that c1 and c2 must be
complex conjugate. In terms of polar coordinates they can be written
as c1 = ρeıω and c2 = ρe−ıω for some ρ and some ω. Inserting into the
above equation finally gives:

xt = ρrt
[
eı(θt+ω) + e−ı(θt+ω)

]
= 2ρrt cos(θt+ ω)

The solution therefore clearly oscillates because the cosine function
oscillates. Depending on the location of the conjugate roots three cases
must be distinguished:

1. r > 1: both roots are outside the unit circle (i.e. the circle of
radius one and centered in the point (0, 0)). xt oscillates, but
with ever increasing amplitude. The fixed point zero is unstable.

2. r = 1: both roots are on the unit circle. xt oscillates, but with
constant amplitude.

3. r < 1: both roots are inside the unit circle. The solution oscillates,
but with monotonically decreasing amplitude and converges to
zero as t→∞. The fixed point zero is asymptotically stable.

Figure 2.5 illustrates the three cases.

We can summarize the above discussion in the following theorem.

Theorem 2.4 (Limiting Behavior of Second Order Equation). The following
statements hold in the case of linear homogenous difference equation of order
two (equation (2.36)):

(i) All solutions oscillate around zero if and only if the equation has no
positive real characteristic root.

(ii) All solutions converge to zero (i.e. zero is an asymptotically stable
steady state) if and only if max{|λ1|, |λ2|} < 1.
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Figure 2.4: Behavior of xt = λt1 depending on λ ∈ R
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Although the limiting behavior of xt is most easily understood in terms
of the roots of the characteristic equation, it is sometimes more convenient
to analyze the properties of the difference equation in terms of the original
parameters φ1 and φ2. Consider for this purpose a nonhomogeneous second
order difference equation where the nonhomogeneous part is just a constant
equal to Z:

xt = φ1xt−1 + φ2xt−2 + z, z 6= 0. (2.38)

Zero is no longer an equilibrium point. Instead, the new equilibrium point
x∗ can be found by solving the equation:

x∗ = φ1x
∗ + φ2x

∗ + z ⇒ x∗ =
z

1− φ1 − φ2

Note that an equilibrium only exists if 1 − φ1 − φ2 6= 0. This condition is
equivalent to the condition that 1 cannot be a root. As the steady state
qualifies for a particular solution of equation (2.38), the general solution is
given by

xt = x∗ + x
(g)
t

Thus, xt converges to its equilibrium if and only if x
(g)
t converges to zero as

t → ∞. Moreover, the solution oscillates around x∗ if and only if x
(g)
t oscil-

lates around zero. Based on the theorem just above, the following theorems
hold.

Theorem 2.5 (Limiting Behavior of Second Order Equation (original pa-
rameters)). Assuming 1− φ1 − φ2 6= 0, the following statements hold.

(i) All solutions of the nonhomogeneous equation (2.38) oscillate around
the equilibrium point x∗ if and only if the characteristic equation has
no positive real characteristic root.

(ii) All solutions to the nonhomogeneous equation (2.38) converge to x∗

(i.e. x∗ is asymptotically stable) if and only if max{|λ1|, |λ2|} < 1.

Theorem 2.6 (Stability Conditions of Second Order Equation (original pa-
rameters)). The equilibrium point x∗ is asymptotically stable (i.e. all solu-
tions converge to x∗) if and only if the following three conditions are satisfied:

(i) 1− φ1 − φ2 > 0

(ii) 1 + φ1 − φ2 > 0

(iii) 1 + φ2 > 0
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Proof. Assume that x∗ is an asymptotically stable equilibrium point. Ac-
cording to the previous Theorem (2.4), this means that both λ1 and λ2 must
be smaller than one in absolute value. According to equation (2.37) this
implies that

|λ1| =

∣∣∣∣∣φ1 +
√
φ2

1 + 4φ2

2

∣∣∣∣∣ < 1 and |λ2| =

∣∣∣∣∣φ1 −
√
φ2

1 + 4φ2

2

∣∣∣∣∣ < 1 .

Two cases have to be distinguished.

real roots: φ2
1 + 4φ2 > 0: This implies the set of inequalities:

−2 < φ1 +
√
φ2

1 + 4φ2 < 2

−2 < φ1 −
√
φ2

1 + 4φ2 < 2

or, equivalently,

−2− φ1 <
√
φ2

1 + 4φ2 < 2− φ1

−2− φ1 < −
√
φ2

1 + 4φ2 < 2− φ1

Squaring the second inequality in the first line implies: φ2
1 + 4φ2 <

4− 4φ1 + φ2
1 which leads to condition (i). Similarly, squaring the first

inequality in the second line yields: 4 + 4φ1 + φ2
1 > φ2

1 + 4φ2 which
results in condition (ii). The assumption |λ1| < 1 and |λ2| < 1 imply
that |λ1λ2| = | − φ2| < 1 which gives condition (iii).

complex roots: φ2
1 + 4φ2 < 0: This implies that 0 < φ2

1 < −4φ2. There-
fore

4(1− φ1 − φ2) > 4− 4φ1 + φ2
1 = (2− φ1)2 > 0

which is equivalent to condition (i). Similarly,

4(1 + φ1 − φ2) > 4 + 4φ1 + φ2
1 = (2 + φ1)2 > 0

which is equivalent to condition (ii). In order to obtain condition (iii),
note that the two complex conjugate roots are given by

λ1 =
φ1

2
+
ı

2

√
φ2

1 + 4φ2 and λ2 =
φ1

2
− ı

2

√
φ2

1 + 4φ2.

Because |λ1| < 1 and |λ2| < 1 by assumption, we have that |λ1λ2| =
| − φ2| < 1 which is condition (iii).
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Assume now that the three conditions are satisfied. They immediately imply
that −2 < φ1 < 2 and that −1 < φ2 < 1. If the roots are real then

−1 <
−2 +

√
φ2

1 + 4φ2

2
< λ1 =

φ1 +
√
φ2

1 + 4φ2

2

<
φ1 +

√
φ2

1 + 4− 4φ1

2

=
φ1 +

√
(2− φ1)2

2

=
φ1 − φ1 + 2

2
= 1

Similarly,

1 >
2−

√
φ2

1 + 4φ2

2
> λ2 =

φ1 −
√
φ2

1 + 4φ2

2

>
φ1 −

√
φ2

1 + 4 + 4φ1

2

=
φ1 −

√
(φ1 + 2)2

2

=
φ1 − φ1 − 2

2
= −1

If the roots are complex, λ1 and λ2 are complex conjugate numbers. Their

squared modulus then equals λ1λ2 =
φ21−(φ21+4φ2)

4
= −φ2. As −φ2 < 1, the

modulus of both λ1 and λ2 is smaller than one.

The three conditions listed above determine a triangle in the φ1-φ2-plane
with vertices (−2,−1), (0, 1) and (2,−1). Points inside the triangle imply
an asymptotically stable behavior whereas points outside the triangle lead
to an unstable behavior. The parabola φ2

1 + 4φ2 = 0 determines the region
of complex roots. Values of φ1 and φ2 above the parabola lead to real roots
whereas values below the parabola lead to complex roots. The situation is
represented in Figure 2.6.

2.4.4 Examples

Multiplier Accelerator model

A classic economic example of a second order difference equation is the
multiplier-accelerator model originally proposed by Samuelson (1939). It
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Figure 2.6: Stability properties of equation: xt − φ1xt−1 − φ2xt−2 = 0

was designed to demonstrate how the interaction of the multiplier and the
accelerator can generate business cycles. The model is one of a closed econ-
omy and consists of a consumption function, an investment function which
incorporates the accelerator idea and the income identity:

Ct = α + βYt−1, 0 < β < 1, α > 0 (consumption)

It = γ(Yt−1 − Yt−2), γ > 0 (investment)

Yt = Ct + It +Gt, (income identity)

where Ct, It, Yt, and Gt denotes private consumption expenditures, invest-
ment expenditures, income, and government consumption, respectively. The
parameter β is called the marginal propensity of consumption and is assumed
to be between zero and one. The remaining parameters of the model, α and
γ, bear no restriction besides that they have to be positive. Inserting the
consumption and the investment equation into the income identity leads to
the following nonhomogeneous second order difference equation:

Yt = (β + γ)Yt−1 − γYt−2 + (α +Gt) (2.39)
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If government expenditures remain constant over time and equal to G, the
equilibrium point Y ∗ for equation (2.39) can be computed as follows:

Y ∗ = (β + γ)Y ∗ − γY ∗ + α +G ⇒ Y ∗ =
α +G

1− β

The stability of this equilibrium point can be investigated by verifying if the
three conditions of Theorem 2.6 are satisfied:

(i) 1− (β + γ) + γ = 1− β > 0

(ii) 1 + (β + γ) + γ = 1 + β + 2γ > 0

(iii) 1− γ > 0

Given the assumptions of the model, the first two conditions are automati-
cally satisfied. The third condition, however, is only valid if the accelerator is
not too strong, i.e. if γ < 1. The steady state Y ∗ is therefore asymptotically
stable if one imposes this additional requirement. Yt oscillates around its
steady state if, according to Theorem 2.4, there is no real positive inverse
root of the characteristic equation. The inverse of the characteristic roots
are given by

λ1,2 =
(β + γ)±

√
(β + γ)2 − 4γ

2
.

If the roots are real, they are both strictly positive and strictly smaller than
one. Thus, Yt can only oscillate around its steady state if and only if the
roots are complex, i.e. if (β+γ)2−4γ < 0. If they are complex, their moduli
are strictly smaller than one.

In the general case where government expenditures are not constant, but
vary over time, we apply the method of undetermined coefficients to find
a particular solution, Y

(p)
t , to equation (2.39). This method conjectures a

certain type of solution and then tries to pin down a solution by inserting it
into the difference equation. In the particular case at hand, the roots of the
characteristic function are all outside the unit circle. Thus, we conjecture a
particular solution of the form:

Y
(p)
t = c+

∞∑
i=0

ψiGt−i

The coefficients ψj are called impulse responses or dynamic multipliers. They
trace the effect on output of an impulse (stimulus) in government expen-
ditures over time. Thereby a unit impulse is specified as ∆Gt = 1 and
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∆Gt−i = 0 for i 6= 0. The effect on output is then

∆Y
(p)
t+h =

∞∑
i=0

ψi∆Gt+h−i = ψh∆Gt = ψh, h = 0, 1, 2, . . .

Inserting this conjectured particular solution into the difference equation
leads to

c+
∞∑
i=0

ψiGt−i =c(β + γ) + (β + γ)
∞∑
i=0

ψiGt−1−i

− cγ − γ
∞∑
i=0

ψiGt−2−i + α +Gt

Equating the constant terms leads to an equation for c:

c (1− (β + γ) + γ) = α ⇒ c =
α

1− β
> α > 0

Equating the terms for Gt−i, i = 0, 1, · · · leads to:

ψ0 = 1

ψ1 = (β + γ)ψ0 ⇒ ψ1 = β + γ

ψ2 = (β + γ)ψ1 − γψ0

· · ·
ψj = (β + γ)ψj−1 − γψj−2, j ≥ 2

Thus, the coefficients ψj, j ≥ 2, follow the same homogenous second order
difference equation with initial values ψ0 = 1 and ψ1 = β + γ. The solution
can therefore be written as

ψj = d1λ
j
1 + d2λ

j
2.

The coefficients d1 and d2 can then be determined from the initial conditions:

ψ0 = 1 = d1 + d2

ψ1 = β + γ = d1λ1 + d2λ2

In order to illustrate the behavior of the multiplier-accelerator model, we
discuss several numerical examples.

β = 4
5

and γ = 1
5

In this case both roots are real and equal to

λ1,2 =
1

2
±
√

5

10
=

{
0.7236

0.2764
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Therefore the impulse response coefficients ψj for j ≥ 0 are given by
ψj = d1λ

j
1 + d2λ

j
2. The constants d1 and d2 can be recovered from the

initial conditions: ψ0 = 1 = d1 + d2 and ψ1 = 1 = d1λ1 + d2λ2. Solving
these two equations for d1 and d2 yields:

d1 =
1− λ2

λ1 − λ2

= 1.6180

d2 =
λ1 − 1

λ1 − λ2

= −0.6180

The corresponding impulse response function is plotted in Figure 2.7.
The initial increase of government expenditures by one unit raises out-
put in current and the subsequent period by one unit. Then the effect of
the impulse dies out monotonically. After ten periods the effect almost
vanished.

β = 3
4

and γ = 1
4

In this case we have a multiple root equal to λ = 0.5. Ac-
cording to equation (2.35) the impulse response coefficients are there-
fore given by ψj = (d0 + d1t)λ

t. The constants d0 and d1 can again
be found by solving the equation system: ψ0 = 1 = d0 and ψ1 = 1 =
(d0 + d1)λ. The solution is given by d0 = 1 and d1 = 1. The corre-
sponding impulse response coefficients are plotted in Figure 2.7. They
resemble very much to those of the previous case. They even die out
more rapidly.

β = 2
3

and γ = 2
3

In this case the discriminant is negative so that we have
two complex conjugate roots:

λ1,2 =
1

3

(
2± ı

√
2
)

The constants can again be found by solving the equation system: ψ0 =
1 = d1 + d2 and ψ1 = 4

3
= d1λ1 + d2λ2. The solution is given by

d1 =
1

2
− ı
√

2

2

d2 =
1

2
+ ı

√
2

2
The corresponding impulse response coefficients are plotted in Fig-
ure 2.7. As expected they clearly show an oscillatory behavior. Due
to the accelerator, the initial impulse is amplified in period one. The
effect is around 1.3. After period one the effect rapidly declines and
becomes even negative in period four. However, in period seven the
effect starts to increase and becomes again positive in period ten. As
is also evident from the Figure, these oscillatory movements die out.
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Figure 2.7: Impulse Response Coefficients of the Multiplier-Accelerator
model

Cobweb model with Inventory

In this example we extend the simple Cobweb model analyzed in subsection
2.3 by allowing the good to be stored (see Sargent, 1987). In addition, we
assume that expectations are rational which in the context of a deterministic
model is equivalent to perfect foresight. These extensions will lead to fur-
ther insights into the method of undetermined coefficients introduced in the
previous example. The new set of equations then reads as follows:

Dt = −βpt, β > 0 (demand)

St = γpet + ut, γ > 0 (supply)

It = α(pet+1 − pt), α > 0 (inventory demand)

St = Dt + (It − It−1), (market clearing)

pet = pt, (perfect foresight)

where ut denotes again a supply shock. The inventory demand schedule
incorporates a speculative element because inventories will be built up if
prices are expected to be higher next period. The market clearing equation
shows that the supply which remains unsold is used to build up inventories;
on the other hand demand can not only be served by newly supplied goods,
but can also be fulfilled out of inventories. Combining these equations leads



60 CHAPTER 2. LINEAR DIFFERENCE EQUATIONS

to the following second order linear difference equation in the price:

pt+1 =
γ + 2α + β

α
pt − pt−1 +

ut
α

(2.40)

Setting φ = γ+2α+β
α

, the characteristic equation becomes:

1− φz + z2 = 0

This equation implies that the two roots, z1 and z2, are given by

z1,2 =
φ±

√
φ2 − 4

2

First note that because φ > 2 the roots are real, distinct, and positive.
Second they come in reciprocal pairs as z1z2 = 1. Thus, one root is smaller
than one whereas the other is necessarily greater than one. Thus, we have
one stable and one explosive root. The solution to the homogenous equation
can therefore be written as

pt = c1λ
t + c2λ

−t

where, without loss of generality, z1 = λ < 1 and z2 = 1
λ
. c1 and c2 are

constants yet to be determined.
Because the agents in this model have rational expectations which implies

that they are forward looking, they will incorporate expected future devel-
opments of the supply shock into their decision. However, past decision are
reflected in the inventories carried over last period. Thus, we conjecture that
the solution will have both a forward and a backward looking component.
Thus, we seek for a particular solution of the following form:

pt =
∞∑

j=−∞

ψjut−j

Following the method of undetermined coefficients we insert this guess into
the difference equation to get:

∞∑
j=−∞

ψjut+1−j = φ
∞∑

j=−∞

ψjut−j −
∞∑

j=−∞

ψjut−1−j +
ut
α

Writing this equation in extensive form leads to:

· · · + ψ−1ut+2 + ψ0ut+1 + ψ1ut + ψ2ut−1 + ψ3ut−2 + · · ·
= · · ·+ φψ−2ut+2 + φψ−1ut+1 + φψ0ut + φψ1ut−1 + φψ2ut−2 + · · ·
− · · · − ψ−3ut+2 − ψ−2ut+1 − ψ−1ut − ψ0ut−1 − ψ1ut−2 − · · ·
+

ut
α
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Equating terms for ut−j, j = . . . ,−2,−1, 0, 1, 2, . . . gives:

· · ·
ut+2 : ψ−1 = φψ−2 − ψ−3

ut+1 : ψ0 = φψ−1 − ψ−2

ut : ψ1 = φψ0 − ψ−1 +
1

α
ut−1 ψ2 = φψ1 − ψ0

ut−2 : ψ3 = φψ2 − ψ1

· · ·

This shows that the ψj’s follow homogenous second order difference equa-
tions:

ψj = φψj−1 − ψj−2 j ≥ 1

ψ−j = φψ−j−1 − ψ−j−2 j ≥ 1

The solution to these difference equations are:

ψj = d1λ
j + d2λ

−j

ψ−j = e1λ
j + e2λ

−j

where the constants d1, d2, e1, e2 have yet to be determined. A sensible eco-
nomic solution requires that, if the supply shock has been constant in the
past and is expected to remain constant in the future, the price must be
constant too. Thus, we can eliminate the exploding parts of the above so-
lutions, setting d2 = 0 and e2 = 0. Next observe that both solutions must
coincide for j = 0 which implies that d1 = e1. Denote this value by d. d can
be determined by observing that the solutions must satisfy the initial value
condition: ψ1 = φψ0 − ψ−1 + 1

α
. Inserting the solutions for ψ1, ψ0, ψ−1 and

recognizing that φ = λ+ λ−1 leads to:

dλ = φd− dλ+
1

α
⇒ d =

α−1

λ− λ−1

The general solution to the Cobweb model with inventory represented by the
difference equation (2.40) is therefore given by

pt = c1λ
t + c2λ

−t +
α−1

λ− λ−1

∞∑
j=−∞

λ|j|ut−j (2.41)
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If we impose again the requirement that the price must be finite if the supply
shock has always been constant and is expected to remain constant in the
future, we have to set c1 = 0 and c2 = 0 to get the solution:

pt =
α−1

λ− λ−1

∞∑
j=−∞

λ|j|ut−j (2.42)

This implies that {pt} is a bounded sequence, i.e. that (pt) ∈ `∞. In this
case the price pt is just a function of all past shocks and all expected future
shocks.

Another way to represent this solution is to express pt as

pt = λpt−1 − α−1λ

∞∑
j=0

λjut+j.

In this expression the double infinite sum is replaced by a single one. This is
due to the fact that the past evolution of supply is now summarized by pt−1

which is supposed to be known in period t. The effect of discounted expected
future supply is just as before.

In order to gain a better understanding of the dynamics, we will analyze
the following numerical example. In this example α = 20

9
and the parameters

β and γ are such that φ = 2.05. This implies that β + γ = 1
9
. The roots are

then given by λ = 0.8 and λ−1 = 1.25. The bounded solution is then given
by

pt = −
∞∑

j=−∞

0.8|j|ut−j

Suppose that the supply shock has been constant forever and is expected
to remain constant at u. The above formula then implies that the logged
price level pt equals −9u and that It = 0. Suppose that an unexpected and
transitory positive supply shock of value 1 hits the market in period 0. Then
according to the first panel in Figure 2.8 the price immediately falls by 1.
At the same time inventories rise because prices are expected to move up in
the future due to the transitory nature of the shock. Here we have a typical
price movement: the price falls, but is expected to increase. After the shock
the market adjusts gradually as prices rise to their old level and by running
down inventories.

Consider now a different gedankenexperiment. Suppose that the shock
is not unexpected, but expected to hit the market only in period 5. In
this case, we see a more interesting evolution of prices and inventories. In
period zero when the positive supply shock for period 5 is announced, market
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Figure 2.8: Impulse Response after a positive Supply Shock

participants expect the price to fall in the future. They therefore want to
get rid of their inventories by trying to selling them already now.12 As a
result, the price and the inventories start to fall already before the supply
shock actually takes place. In period 5 when the supply shock finally hits the
market, market participants expect the price to move up again in the future
which leads to a buildup of inventories. Note that this buildup is done when
the price is low. From period 5 on, the market adjusts like in the previous
case because the supply shock is again assumed to be transitory in nature.

Taylor model

In this example we analyze a simple deterministic version of Taylor’s stag-
gered wage contract model which also has a backward and forward component
(see Taylor (1980) and Ashenfelter and Card (1982)).13 In this model, half
of the wages have to be contracted in each period for two periods. Thus, in
each period half of the wages are renegotiated taking the wages of the other
group as given. Assuming that the two groups are of equal size, wages are
set according to the following rule:

wt = 0.5wt−1 + 0.5wt+1 + h(yt + yt+1), h > 0. (2.43)

12In our example they actually go short as I0 < 0.
13The model could equally well be applied to analyze staggered price setting behavior.
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Thus, wage setting in period t takes into account the wages of contracts still
in force, wt−1, and the expected wage contract in the next period, wt+1. As
the two groups are of equal size and power, we weight them equally by 0.5.
In addition wages depend on the state of the economy over the length of the
contract, here represented by aggregate demand averaged over the current
and next period. The aggregate wage in period t, Wt, is then simply the
average over all existing individual contract wages in place in period t:

Wt =
1

2
(wt + wt−1) (2.44)

The model is closed by adding a quantity theoretic aggregate demand equa-
tion relating Wt and yt:

yt = γWt + vt, γ < 0. (2.45)

The negative sign of γ reflects the fact that in the absence of full accom-
modation by the monetary authority, higher average nominal wages reduce
aggregate demand. vt represents a shock to aggregate demand.

Putting equations (2.43), (2.45), and (2.44) together one arrives at a
linear difference equation of order 2:

(1 + hγ)wt+1 − 2(1− hγ)wt + (1 + hγ)wt−1 = −2h(vt + vt+1)

or equivalently
wt+1 − φwt + wt−1 = Zt (2.46)

with φ = 2 (1−hγ)
(1+hγ)

and Zt = − 2h
(1+hγ)

(vt + vt+1). The characteristic equation
for this difference equation is

1− φz + z2 = 0.

The symmetric nature of the polynomial coefficients implies that the roots
appear in pairs such that one root is the inverse of the other.14 This means
that one root, say λ1, is smaller than one whereas the other one is greater
than one, i.e. λ2 = 1/λ1. To see this note first that the discriminant is equal
to 4 = −hγ > 0. Thus, the roots are real and second that λ1λ2 = 1. If we
denote λ1 by λ then λ2 = 1/λ and we have φ = λ+ λ−1.

Applying the superposition principle, the solution becomes

wt = c1λ
t + c2λ

−t + w
(p)
t (2.47)

14This conclusion extends to contracts longer than two periods (see Ashenfelter and
Card, 1982).
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where the coefficients c1 and c2 and a particular solution w
(p)
t have yet to be

determined. In order to eliminate explosive solutions, we set c2 = 0. The
other constant can then be determined by noting that (wt) is a predetermined
variable such that the wage negotiations in period one take wages from the
other group negotiated in period zero as given. Thus, c1 = w0 − w

(p)
0 . To

find the particular solution, set

w
(p)
t =

∞∑
j=−∞

ψjZt−j

and insert this solution into the difference equation (2.47) and perform a
comparison of coefficients as in the previous exercise. This leads again to
two homogeneous difference equations for the coefficients (ψj) and (ψ−j),
j ≥ 1 with solutions

ψj = d1λ
j + d2λ

−j

ψ−j = e1λ
j + e2λ

−j

where the coefficients d1, d2, e1 and e2 have still to be determined. The elim-
ination of explosive coefficient sequences leads to d2 = e2 = 0. Furthermore,
both solutions must give the same ψ0 so that d1 = e1. Denote this value by
d, then comparing the coefficients for Zt and noting that φ = λ + λ−1 leads
to:

ψ1 = φψ0 − ψ−1 + 1 ⇐⇒ dλ = φd− dλ+ 1.

Therefore

d =
1

λ− λ−1
< 0.

The effect of a shock to aggregate demand in period j ≥ 0 is then

∂wt+j
∂vt

= ψ−j + ψ−j−1 = − 2h

1 + hγ
d(1 + λ)λj, j = 0, 1, 2, . . .
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Chapter 3

Systems of Linear Difference
Equations with Constant
Coefficients

3.1 Introduction

This chapter generalizes the univariate linear difference equations to systems
of linear difference equations. For each variable x1t, · · · , xdt, d ≥ 1, we are
given a nonhomogeneous difference equation of order p where each variable
can, in principle, depend on all other variables with a lag. Writing each
difference equation separately, the system is given by

x1,t+1 = a
(1)
11 x1,t + a

(1)
12 x2,t + · · ·+ a

(1)
1d xd,t

+ · · ·+ a
(p)
11 x1,t−p+1 + a

(p)
12 x2,t−p+1 + · · ·+ a

(p)
1d xd,t−p+1 + b1t

x2,t+1 = a
(1)
21 x1,t + a

(1)
22 x2,t + · · ·+ a

(1)
2d xd,t

+ · · ·+ a
(p)
21 x1,t−p+1 + a

(p)
22 x2,t−p+1 + · · ·+ a

(p)
2d xd,t−p+1 + b2t

· · ·
xd,t+1 = a

(1)
d1 x1,t + a

(1)
d2 x2,t + · · ·+ a

(1)
dd xd,t

+ · · ·+ a
(p)
d1 x1,t−p+1 + a

(p)
d2 x2,t−p+1 + · · ·+ a

(p)
dd xd,t−p+1 + bdt

Using matrix notation this equation system can be written more com-
pactly as

xt+1 = A1xt + A2xt−1 + · · ·+ Apxt−p+1 + bt, Ap 6= 0, (3.1)

where bt denotes an d-vector of exogenous variables and where Ai, i =

67
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1, 2, . . . , p, denote the d×d-matrices Ak =
(
a

(k)
ij

)
i,j=1,2,...,d

for k = 1, 2, . . . , p.

The solution of this difference equation is based again on the same principles
as in the univariate case (see page 25). Before doing so we show how to
reduce this p-th order system to a first order system.

Any system of order p can be rewritten as a system of order one by
enlarging the state space from Rd to Rdp. To see this, define a new variable
yt as the stacked vectors xt, xt−1, · · · , xt−p+1. This new variable then satisfies
the following first order system:

yt+1 =



xt+1

xt
xt−1

...
xt−p+1

xt−p+2


=


A1 A2 A3 . . . Ap−1 Ap
In 0 0 . . . 0 0
0 In 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . Id 0





xt
xt−1

xt−2
...

xt−p+2

xt−p+1


+



bt
0
0
...
0
0


= Ayt + b̃t (3.2)

where b̃t is redefined to be
(
b′t 0 0 . . . 0 0

)′
. Id denotes the identity

matrix of dimension d. The matrix A is a dp×dp matrix called the companion
matrix of (3.1).1 Thus, multiplying out the equation system (3.2) one can
see that the first equation gives again the original equation (3.1) whereas
the remaining p− 1 equations are just identities. The study of a p-th order
system can therefore always be reduced to a first order system.

Properties of the Companion Matrix in the Univariate Case

The one-dimensional difference equation of order p, equation (2.1), can also
be written in this way as a first order system of dimension p. The companion
matrix is given in this case by

A =


a1 a2 a3 · · · ap−1 ap
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

 . (3.3)

For this companion matrix, we can derive the following properties:

� The companion matrix is nonsingular if and only if ap 6= 0.

1The literature distinguishes four forms of companion matrices depending on whether
the Ai’s appear in the first, as in equation (3.2), or last row or first or last column.
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� The characteristic polynomial of the companion matrix is: P(λ) =
λp − a1λ

p−1 − · · · − ap−1λ − ap. Thus, the roots of the characteristic
polynomial of the companion matrix are just the inverses of the roots
of the characteristic polynomial of the difference equation (2.31).

� The geometric multiplicity of each eigenvalue equals 1, i.e. there is only
one independent eigenvector for each λi. These eigenvectors are of the
form

(
λp−1
i , λp−2

i , · · · , λi, 1
)′

. Thus, in this situation there is no need to
rely on the Jordan canonical form (see Section 3.2.2).

3.2 First Order Systems

The introduction above demonstrated that the first order system of differ-
ence equations encompasses single as well as systems of difference equations
of order p. We therefore reduce our analysis to the first order system of
difference equations:

xt+1 = Axt + bt, A 6= 0, t ∈ Z, (3.4)

where xt ∈ Rd and A is a d × d matrix. The nonautonomous part is repre-
sented by the d-vector bt which corresponds to a vector of exogenous vari-
ables. In general, solutions may not exist for negative times. In fact, when
A has not full rank, then for points in the range of A there exists x−1 such
that x0 = Ax−1 with x−1 being not unique.2 Thus, for simplicity, we restrict
ourself to the case where A is nonsingular. Hence the maintained assumption
throughout this monograph is that A ∈ GL(d), the set of invertible real d×d
matrices.

As in the univariate case, the superposition principle also holds in the
multivariate case. Thus, any solution is composed as a sum of the general
solution to the homogeneous system and a particular solution to the nonho-
mogeneous system. We therefore establish first an explicit solution formula
for the homogeneous system and then show how get a particular solution for
the nonhomogeneous system.

3.2.1 Homogeneous First Order Systems

As in the one-dimensional case, we start the analysis with the discussion of
the homogeneous equation:

xt+1 = Axt, A ∈ GL(d) and t ∈ Z. (3.5)

2A singular A matrix may be interpreted as a system which encompasses some redun-
dant variables. See Section 3.5.
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We immediately see that starting with some initial vector x0 = x, all sub-
sequent values of xt, t > 0, are uniquely determined. The invertibility
of A implies that also all past values are uniquely determined. Indeed,
x−(t+1) = A−1x−t. Hence, for any initial condition x0 = x, we have the
solution

xt = Atx0 = Atx, t ∈ Z.

To highlight the dependency on the initial condition, we write xt = ϕ(t, x) =
Atx. Note that the invertibility of A implies that solutions are unique up to
x. Indeed, x 6= y implies xt = ϕ(t, x) = Atx 6= yt = ϕ(t, y) = Aty.

Linear Dependence/Independence Suppose that we have two solutions

to the homogeneous system (3.5), x
(1)
t and x

(2)
t . Then, it is clear that any

linear combination of these two solutions, c1x
(1)
t + c2x

(2)
t , is also a solution.

Thus, the set of all solutions to the homogeneous system (3.5) forms a linear
space. As in the univariate case, we analyze the algebraic structure of this
space and determine its dimension.

The definition for the linear independence of r solutions is:

Definition 3.1 (Linear Dependence, Linear Independence). The sequences
(x(1)), (x(2)), · · · , (x(r)) with r ≥ 1 are said to be linearly dependent if there
exist constants c1, c2, . . . , cr ∈ R, not all zero, such that

c1x
(1)
t + c2x

(2)
t + · · ·+ crx

(r)
t = 0 for all t ∈ Z.

This definition is equivalent to saying that there exists a nontrivial linear
combination of the solutions which is zero. If the solutions are not linearly
dependent, they are said to be linearly independent.

For given r sequences (x(1)), (x(2)), · · · , (x(r)), we can define their Caso-
ratian matrix C(t):

C(t) =


x

(1)
1t x

(2)
1t . . . x

(r)
1t

x
(1)
2t x

(2)
2t . . . x

(r)
2t

...
...

. . .
...

x
(1)
rt x

(2)
rt . . . x

(r)
rt


The Casoratian matrix is closely related to the issue whether or not the
sequences are independent.

Lemma 3.1. If det C(t) of r sequences (x(i)), 1 ≤ i ≤ r, is different from
zero for at least one t0 ∈ Z, then (x(i)), 1 ≤ i ≤ r, are linearly independent.
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Proof. Suppose that (x(i)), 1 ≤ i ≤ r, are linearly dependent. Then by
definition there exists a nonzero vector c such that C(t)c = 0 for all t. In
particular, C(t0)c = 0. This stands, however, in contradiction with the as-
sumption det C(t0) 6= 0.

Note that the converse is not true as can be seen from the following ex-

ample: x
(1)
t =

(
1
t

)
and x

(2)
t =

(
t
t2

)
, t ∈ N. These two sequences are linearly

independent, but det C(t) = 0 for all t ≥ 0. The converse of Lemma 3.1 is
true if the sequences are solutions to the homogeneous equation (3.5).

Lemma 3.2. If (x(i)), 1 ≤ i ≤ r, are r linearly independent solutions of the
homogeneous system (3.5), then det C(t) 6= 0 for all t ∈ Z.

Proof. Suppose there exists a t0 such det C(t0) = 0. This implies that there

exists a nonzero vector c such that C(t0)c =
∑r

i=1 cix
(i)
t0 = 0. Because the x

(i)
t

are solutions of the system (3.5) so is the linear combination yt =
∑r

i=1 cix
(i)
t .

For this solution yt0 = 0 thus yt = 0 for all t because the invertibility of A
(uniqueness of the solutions). As the solutions are, however, linearly inde-
pendent c must be equal to 0 which stands in contradiction to c 6= 0.

We can combine the two Lemmas to obtain the following theorem.

Theorem 3.1. The solutions (x(i)), 1 ≤ i ≤ r, of the homogeneous system
(3.5) are linearly independent if and only if there exists t0 ≥ 0 such that
det C(t0) 6= 0.

Fundamental Matrix The above Theorem implies that the d solutions
Φ

(i)
t = ϕ(t, e(i)), 1 ≤ i ≤ d, of the homogeneous system (3.5) where

Φ
(i)
0 = ϕ(0, e(i)) = e(i) =

(
0 · · · 0 1︸︷︷︸

i-th element

0 · · · 0
)′
, 1 ≤ i ≤ d,

(3.6)
are linearly independent. Thus, we have at least d linearly independent so-
lutions. Now suppose that we are given any solution xt = ϕ(t, x) of the
homogeneous system (3.5). Then it is easy to see that we can express xt
as xt =

∑d
i=1 xi,0Φ

(i)
t where Φ

(i)
t = ϕ(t, e(i)). As the solutions are uniquely

determined, we have thus shown that the space of all solutions to the homo-
geneous system (3.5) is a linear space of dimension d. Thus, any solution can
be written as

xt = ϕ(t, x) =
d∑
i=1

xi,0Φ
(i)
t = Φ(t)x (3.7)
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where Φ(0) = Id and Φ(t) = (Φ
(1)
t , . . . ,Φ

(d)
t ).

Because each column of the matrix function Φ(t) is a solution to the ho-
mogeneous system (3.5), Φ(t) satisfies the homogeneous linear matrix system:

Φ(t+ 1) = AΦ(t) (3.8)

This leads to the following definitions.

Definition 3.2 (Fundamental Matrix). Any sequence of nonsingular d × d
matrices Φ(t) which satisfies the homogeneous matrix system (3.8) is called
a fundamental matrix. If in addition the matrix satisfies Φ(0) = Id then it is
called a principal fundamental matrix.

Note that if V(t) is any fundamental matrix then Φ(t) = V(t)V−1(0) is a
principal fundamental matrix. Note also if V(t) is a fundamental matrix then
V(t)C is also a fundamental matrix where C is any nonsingular matrix. This
implies that there are infinitely many fundamental matrices for a given homo-
geneous matrix system. There is, however, only one principal fundamental
matrix because the matrix difference equation (3.8) uniquely determines all
subsequent matrices once an initial matrix is given. In the case of a principal
fundamental matrix this initial matrix is the identity matrix.

On a more general note define Φ(t, s) as

Φ(t, s) = V(t)V−1(s), t, s ∈ Z

where V(t) is any fundamental matrix of the homogeneous matrix system (3.8).
It is easy to verify that, for all t, s ∈ Z, Φ(t, s) has the following properties:

(i) Φ(t+ 1, s) = AΦ(t, s). Hence, Φ(t, s) is a solution of the matrix differ-
ence equation, therefore a fundamental matrix;

(ii) Φ(t, 0) is a principal fundamental matrix;

(iii) Φ−1(t, s) = Φ(s, t);

(iv) Φ(t, s) = At−s when the system is given by (3.5).

In the case of the linear homogeneous system (3.5) Φ(t) = At is the principal
fundamental matrix. Thus, any solution to the homogeneous system (3.5)
has the form:

xt = Φ(t)x = Atx (3.9)

where x ∈ Rd is a given vector.
Based on Φ(t, s), we define Green’s matrix as the kernel

Γ(t, s) = Φ(t, r)Φ−1(s, r), r, s, t ∈ Z.
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Lemma 3.3. For all r, s, t ∈ Z Green’s matrix satisfies:

(i) Γ(t, t) = Id;

(ii) Γ−1(t, s) = Γ(s, t);

(iii) Γ(t+ 1, s) = AΓ(t, s) and Γ(t, s+ 1) = Γ(t, s)A−1;

(iv) Γ(t, s) = Γ(t, r)Γ(r, s);

(v) Γ(t, s) = At−s when the system is given by (3.5).

3.2.2 Solution Formula for Homogeneous Systems

In order to find the explicit solution formulas of the homogeneous system
(3.5) and to understand its properties, we need to find an expression for At.
In analogy to the univariate case, assume the solution is again a power of
some number λ 6= 0 times a constant vector x 6= 0, i.e. xt = λtx. Inserting
this guess into the defining homogeneous equation leads to

xt+1 = λt+1x = Aλtx.

Dividing by λt this implies

λx = Ax or (A− λId)x = 0.

Thus, for xt = λtx to be a solution, λ and x must be an eigenvalue, respec-
tively an eigenvector of A. If there are d distinct eigenvalues {λ1, λ2, . . . , λd},
Theorem 2.3 implies that {λt1, λt2, . . . , λtd} are linearly independent. Hence
the solutions form a d-dimensional linear space. The understanding of the
homogeneous system therefore requires an analysis of the eigenvalues and
eigenvectors of the matrix A.3 It is useful to distinguish in this context two
cases.

Distinct Eigenvalues

If all the eigenvalues, λ1, · · · , λd of A, are distinct, then A is diagonalizable,
i.e. similar to a diagonal matrix. Thus, there exists a nonsingular matrix
Q such that Q−1AQ = Λ where Λ = diag(λ1, · · · , λd). The columns of Q

3Appendix C.3 provides an outline of the basic properties of eigenvalues and eigen-
vectors. For details consult standard textbooks on linear algebra, like Meyer (2000) and
Strang (2003).
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consist of the d linearly independent eigenvectors of A. With this similarity
transformation in mind At can be immediately computed as:

At = QΛQ−1QΛQ−1 · · ·QΛQ−1︸ ︷︷ ︸
t times

= QΛtQ−1

= Q


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λd


t

Q−1 = Q


λt1 0 · · · 0
0 λt2 · · · 0
...

...
. . .

...
0 0 · · · λtd

Q−1

In the case of distinct eigenvalues, it is easy to proof the following theorem.

Theorem 3.2. If the spectrum of A, σ(A) = {λ1, · · · , λd}, consists of d
distinct eigenvalues with corresponding eigenvectors qi, i = 1, . . . , d, then
the set

x
(i)
t = λtiqi, i = 1, . . . , d,

represents a fundamental set of solutions to the homogeneous system (3.5).

Proof. As qi is an eigenvector of A corresponding to λi, we have

x
(i)
t+1 = λt+1

i qi = λiλ
t
iqi = Aλtiqi = Ax

(i)
t , t ≥ 0.

The third equality follows from AQ = QΛ. Thus, the x
(i)
t , i = 1, · · · , d,

are solutions to the homogeneous system (3.5). In addition, we have that
the determinant of the corresponding Casoratian matrix evaluated at t = 0
is det C(0) = det (q1, . . . , qn) = detQ 6= 0 because Q consists of d linearly
independent eigenvectors and is therefore nonsingular. Thus, according to
Theorem 3.1 these solutions are linearly independent.

The general solution to the homogeneous system (3.5) can be written as

xt =
d∑
i=1

ciλ
t
iqi, t ∈ Z, (3.10)

for some constants c1, · · · , cd. If an eigenvalues is complex, the entries of the
corresponding eigenvector must be complex too in order to ensure real values
for xt. From the above formula it is clear that the asymptotic growth rate of
xt is governed by the eigenvalue with the largest modulus, provided that the
corresponding constant is nonzero. See Section 3.2.3 for a general statement.

A geometric interpretation of the general solution (3.10) is obtained by
decomposing A into the sum of projector matrices according to the Spectral
Theorem C.1 given in Appendix C.3.
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If A is diagonalizable, the Spectral Theorem implies that we can de-
compose any x ∈ Rd into s components P1x, . . . , Psx such that, for j =
1, . . . , s, Pjx0 is projected onto the subspace N(A − λjId). Corollary C.1
then implies that this component grows at the exponential rate log |λj| =
lim±t→∞

1
t

log ‖λtjPjx0‖. Thus, this component converges to zero if if |λj| < 1
and diverges if |λj| > 1. A systematic exposition of this aspect is given in
Section 3.2.3 below and will become particularly relevant in the analysis of
time–varying systems treated in Chapter 6.

Another way to understand the result of Theorem 3.2 is to observe that
the similarity transformation actually uncouples the interrelated system in xt
into d unrelated univariate first order difference equations. This decoupling
is achieved by a change of basis of the state space which corresponds to the
variable transformation yt = Q−1xt:

yt+1 = Q−1xt+1 = Q−1AQQ−1xt = Λyty1,t+1
...

yd,t+1

 =

λ1 · · · 0
...

. . .
...

0 · · · λd


y1,t

...
yd,t


Thus, through this transformation we have obtained d unrelated univariate
first order difference equations in yi,t, i = 1, . . . , d:

y1,t+1 = λ1y1,t

· · ·
yd,t+1 = λdyd,t

These equations can be solved one-by-one by the methods discussed in chap-
ter 2. The general solutions to these univariate first order homogeneous
equations are therefore yi,t = ciλ

t
i, i = 1, · · · , d. Transforming the system in

yt back to the original system by multiplying yt from the left with Q yields
exactly the solution in equation (3.10).

This change of basis, thus, transforms a complicated system into a simpler
one such that there is an exact correspondence between the original system
and the transformed one. We can visualize this insight by viewing A and Λ
as maps from Rd to Rd. This leads to the commutative diagram below.

Rd A−−−→ Rd

Q−1

y y Q−1

Rd Λ−−−→ Rd

The commutativity is expressed by the identity ΛQ−1 = Q−1A. On a more
general note, we say that A is conjugate to Λ via the map Q−1. A more
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sophisticated application of conjugation is given by linearizing nonlinear sys-
tems. See the Hartman–Grobman Theorem 1.5 presented in Chapter 1.3.2.

Repeated Eigenvalues

The situation with repeated eigenvalues is more complicated. Before dealing
with the general case, note that even with repeated eigenvalues the matrix A
can be diagonalizable. This is, for example, the case for normal matrices, i.e.
matrices for which AA′ = A′A. Examples of normal matrices include sym-
metric matrices (A = A′), skew symmetric matrices (A = −A′) and unitary
or orthogonal matrices (AA′ = A′A = I). More generally, A is diagonalizable
if and only if, for each eigenvalue, the algebraic multiplicity (the multiplicity
as a root of the characteristic polynomial) equals the geometric multiplicity
(the maximum number of linearly independent eigenvectors). It this case
the eigenvalues are called semisimple. An eigenvalue is called simple if its
algebraic multiplicity is one.4 If the maximum number of linearly indepen-
dent eigenvectors corresponding to some eigenvalue is strictly less than its
algebraic multiplicity, the matrix is called defective.

As A is not, in general, diagonalizable, we have to use its Jordan canoni-
cal form to find an expression for the solution of equation (3.5).5 For every
matrix A with distinct eigenvalues σ(A) = {λ1, · · · , λs}, there exists a non-
singular matrix Q such that A can be reduced to a block diagonal matrix J
by a similarity transformation, i.e. Q−1AQ = J :

J = Q−1AQ =


J (λ1) 0 · · · 0

0 J (λ2) · · · 0
...

...
. . .

...
0 0 · · · J (λs)


The Jordan segments J (λi), i = 1, · · · , s, consist of ti Jordan blocks, Jj (λi),
j = 1, · · · , ti, where ti is the dimension of the nullspace of A − λiI, i.e.
ti = dim N(A− λiI). Thus, ti is the number of independent eigenvectors
corresponding to the eigenvalue λi. Each Jordan segment J (λi) has a block

4Obviously, a simple eigenvalue is always semisimple.
5A detailed treatment of the Jordan canonical form can be found, for example, in

Meyer (2000). The current exposition uses the complex Jordan form. There is, however,
an equivalent presentation based on the real Jordan form (see Colonius and Kliemann,
2014).
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diagonal structure:

J (λi) =


J1 (λi) 0 · · · 0

0 J2 (λi) · · · 0
...

...
. . .

...
0 0 · · · Jti (λi)

 .

The Jordan blocks themselves are of the following form:

Jj (λi) =


λi 1 0 · · · 0 0
0 λi 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · λi 1
0 0 0 · · · 0 λi

 = λiI +N (3.11)

where

N =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

 .

The square matrix N is a nilpotent matrix, i.e. Nk = 0 if k is the dimension of
N . The dimension of the largest Jordan block in the Jordan segment J (λi)
is called the index of the eigenvalue λi, denoted by ki = index(λi). If ki = 1,
the matrices Jj(λi) are just scalars equal to λi. Thus, J(λi) is a diagonal
matrix of dimension ti with λi on the diagonal. Therefore, if the index of
every eigenvalue equals one, the matrix is diagonalizable.

Given these preliminaries it is now a straightforward task to compute
At = QJ tQ−1 = Q diag (J t (λ1) , · · · , J t (λs)) Q

−1 where the t-th power of a
Jordan segment J t (λi) is just J t (λi) = diag

(
J t1 (λi) , · · · , J tti (λi)

)
. The t-th

power of a Jordan block Jj (λi), j = 1, · · · , ti, is given by the expression:

Jj (λi)
t = (λiI +N)t

= λtiI +

(
t

1

)
λt−1
i N +

(
t

2

)
λt−2
i N2 + · · ·+

(
t

k − 1

)
λt−k+1
i Nk−1

=


λti

(
t
1

)
λt−1
i

(
t
2

)
λt−2
i · · ·

(
t

k−1

)
λt−k+1
i

0 λti
(
t
1

)
λt−1
i · · ·

(
t

k−2

)
λt−k+2
i

...
...

. . . . . .
...(

t
1

)
λt−1
i

0 0 0 · · · λti

 (3.12)

where N is the nilpotent matrix of size corresponding to the Jordan block.
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Real Jordan Decomposition

When the eigenvalues are complex some entries of the corresponding eigen-
vectors must be complex too to achieve real values for xt. In order to avoid
this intricacy, one may compute the real Jordan decomposition instead. This
decomposition relies on the fact that the complex eigenvalues appear as a
conjugate pairs. One may then construct Jordan blocks of the form

Jj (λi = αi ± βi) =


Di I2 0 · · · 0 0
0 Di I2 · · · 0 0
...

...
...

...
...

0 0 0 · · · Di I2

0 0 0 · · · 0 Di


where Di =

(
αi −βi
βi αi

)
and I2 is the identity matrix of order two. With

this modification one obtains a factorization JR = Q−1AQ where only real
entries appear in JR and Q.

3.2.3 Lyapunov spaces

The asymptotic behavior of solutions of linear homogeneous difference equa-
tions provides a key to understand the connection between linear algebra and
difference equations (dynamical systems). An aspect which will become key
when analyzing systems with time-varying coefficients (see Chapter 6). Here
we follow closely the exposition of Colonius and Kliemann (2014) and define
the Lyapunov exponent.

Definition 3.3 (Lyapunov exponent). Denote by xt = ϕ(t, x) = Atx, t ∈ Z,
a solution of the linear homogeneous difference equation (3.5). Its Lyapunov
exponent or exponential growth rate is defined as

λ(x) = lim sup
t→∞

1

t
log ‖ϕ(t, x)‖, x 6= 0,

where log denotes the natural logarithm and ‖.‖ the Euclidean norm in Rd.

From the definition it is obvious that vectors with different Lyapunov
exponents are independent. Thus, there are at most d distinct Lyapunov
exponents.6 Before analyzing the general theory, It is instructive to consider

6Additional properties of Lyapunov exponents can be found in Arnold (2003, section
3.2.1)
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the univariate case xt+1 = axt, 0 6= a ∈ R, the solutions are ϕ(t, x) = atx.
The Lyapunov exponent is therefore given as a limit:

λ(x) = lim
t→±∞

1

t
log(|atx|) = lim

t→±∞

1

t
log(|a|t) + lim

t→±∞

1

t
log(|x|) = log(|a|).

Thus, we have convergence to zero if and only if λ(x) < 0 or equivalently
|a| < 1.

The (real) Jordan decomposition induces a splitting of the state space Rn

into a direct sum of ` subspaces so–called Lyapunov spaces :

Rn = L(λ1)⊕ . . .⊕ L(λ`).

Thereby each Lyapunov space L(λj), j = 1, . . . , `, is constructed as follows.
Suppose that there are 1 ≤ ` ≤ d distinct moduli of the eigenvalues of A.
Denote the logarithm these moduli by λj and order them as λ1 > . . . > λ`.

7

Then define Lj = L(λj) as the direct sum of the real generalized eigenspaces
associated to eigenvalues with logged modulus equal to λj. It can then be
shown (see Colonius and Kliemann, 2014, theorem 1.5.6) that the Lyapunov
exponents λ(x) are given by the logarithms λj of the moduli of the eigenvalues
of A. Moreover, for an orbit ϕ(., x) with x 6= 0 one has

λ(x) = lim
t→±∞

1

t
log ‖ϕ(t, x)‖ = λj if and only if x ∈ L(λj).

For the characterization of Lyapunov spaces it is important to consider the
limit to +∞ and −∞. Take, for example, x = x1 + x2 where xi ∈ L(λi),
λ1 < λ2, and x 6= 0, then λ(x) = λ2. A refined version of this result with
respect to limits in positive and negative times can be obtained using flags
of subspaces (see Colonius and Kliemann, 2014, theorem 1.5.8).

3.2.4 Nonhomogeneous First Order System

Consider now the first order nonhomogeneous system

xt+1 = Axt + bt (3.13)

where bt is assumed to be bounded. As in the one-dimensional case, the
superposition principle also holds in the multivariate case. Suppose that
there exist two solutions to the nonhomogeneous system (3.13), x

(1)
t and x

(2)
t .

7It should be clear from the context whether λ denotes an eigenvalue of a matrix or
a Lyapunov exponent. As the two are concepts are intimately related we use the same
notation for both.
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Then one can easily verify that x
(1)
t − x

(2)
t is a solution to the homogeneous

system (3.5). Thus, the superposition principle implies that x
(1)
t −x

(2)
t = Atc

for some vector c.

Theorem 3.3. Every solution xt to the first order nonhomogeneous sys-
tem (3.13) can be represented as the sum of the general solution to the

homogeneous system (3.5), (x
(g)
t ), and a particular solution to the nonhomo-

geneous system (3.13), (x
(p)
t ):

xt = x
(g)
t + x

(p)
t = Atc+ x

(p)
t . (3.14)

One can try to find a particular solution by iterating the difference equa-
tion backwards :

xt = Axt−1 + bt−1

xt = A(Axt−2 + bt−2) + bt−1 = A2xt−2 + Abt−2 + bt−1

. . .

xt = Atx0 + At−1b0 + At−2b1 + · · ·+ Abt−2 + bt−1

= Atx0 +
t−1∑
j=0

Ajbt−1−j

By taking limits to infinity, this suggests

x
(p)
t =

∞∑
j=0

Ajbt−1−j

as a candidate for a particular solution. So that the general solution to the
nonhomogeneous equation would become

xt = Atc+
∞∑
j=0

Ajbt−1−j. (3.15)

This idea will, however, only work out if the modulus of all eigenvalues of
A are strictly smaller than one. In this case, the infinite sum converges and
the particular solution is well–defined. The initial value problem can then
be solved by setting c = x0 −

∑∞
j=0 A

jb−1−j. If bt is constant and equal to
b, the constant c equals the deviation from the steady state in period 0, i.e.
x0 − x∗ where x∗ = (Id − A)−1b is the steady state of the system.

This procedure will, however, fail if some or all eigenvalues are outside
the unit circle. Suppose that all eigenvalues are strictly greater than one in
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absolute value. In this case we can take up the ideas from the univariate case
(see f.e. the equity price model and Cagan’s hyperinflation model in 2.3) and
iterate the difference equation forward k times:

xt = A−1xt+1 − A−1bt

xt = A−1(A−1xt+2 − A−1bt+1)− A−1bt

= A−2xt+2 − A−1bt − A−2bt+1

. . .

xt = A−kxt+k − A−1bt − A−2bt+1 − . . .+ A−kbt+k−1

= A−kxt+k −
k∑
j=1

A−jbt−1+j

Taking k to infinity suggests

x
(p)
t = −

∞∑
j=1

A−jbt−1+j (3.16)

as candidate for a particular solution. This solution is well–defined as the
infinite sum converges. The unique nonexploding solution is then obtained
by setting c = 0. Hence, xt = x

(p)
t = −

∑∞
j=1 A

−jbt−1+j.
Consider next the case where A has the block diagonal form

A =

(
A− 0
0 A+

)
where A− has eigenvalues with moduli strictly smaller than one whereas
A+ has eigenvalues with moduli strictly greater than one. Partition the bt
conformably as bt = (b−′t , b

+′
t )′. A well–defined particular solution is then

obtained by combining the backward and the forward procedure:

x
(p)
t =

 ∑∞
j=0A

jb−t−1−j

−
∑∞

j=1A
−jb+

t−1+j


The general solution of the nonhomogeneous equation then becomes

xt =

A− 0

0 A+

tc−
c+

+

 ∑∞
j=0A

jb−t−1−j

−
∑∞

j=1A
−jb+

t−1+j

 (3.17)

where the vector c is partitioned conformably as c = (c−′, c+′)′. Thus, xt
will remain bounded if and only if c+ = 0. Whether this assumption makes
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sense depends on the particular economic model at hand. Finally, c− has to
be determined from some initial value condition. If c− cannot be uniquely
determined, the system becomes indeterminate.

In general, A will not be of the nice block diagonal form as above and will
have some eigenvalues smaller than one in absolute value and some eigen-
values larger than one in absolute value. Thus, we will have a mixture of
backward and forward solutions. Moreover, for this strategy to work and to
arrive at a non–diverging solution, the number of stable roots must match
the number of initial conditions. We will analyze the general case Section
3.4.

Variation of Constants Formula Another general way to derive partic-
ular solutions of the nonhomogeneous equation is by applying the so-called
variation of constants formula. This approach makes explicit use of the fun-
damental matrix and Green’s matrix. From equation (3.9) the solution of
the homogeneous equation can be written as xt = Φ(t)c for some constant c
where Φ(t) is a fundamental matrix. Allowing c to vary over time it is possible
to generate a solution of nonhomogeneous equation by setting xt = Φ(t)ct.
If this should be a solution of the nonhomogeneous,

xt+1 = Φ(t+ 1)ct+1 = Axt + bt = AΦ(t)ct + bt = Φ(t+ 1)ct + bt.

This implies

Φ(t+ 1)(ct+1 − ct) = bt

ct+1 − ct = Φ−1(t+ 1)bt

Because ct = (ct − ct−1) + · · ·+ (cs+1 − cs) + cs, for t > s,

ct = cs +
t−1∑
j=s

Φ−1(j + 1)bj = cs +
t∑

j=s+1

Φ−1(j)bj−1

= cs +
t−1−s∑
j=0

Φ−1(t− j)bt−1−j.

Hence, multiplying by Φ(t)

xt = Φ(t)ct = Φ(t)cs + Φ(t)
t−1−s∑
j=0

Φ−1(t− j)bt−1−j.
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Because xs = Φ(s)cs,

xt = Φ(t)Φ−1(s)xs +
t−1−s∑
j=0

Φ(t)Φ−1(r)Φ(r)Φ−1(t− j)bt−1−j

= Φ(t, s)xs +
t−1−s∑
j=0

Φ(t, r)Φ(r, t− j)bt−1−j

= Φ(t, s)xs +
t−1−s∑
j=0

Φ(t, r)Φ−1(t− j, r)bt−1−j

= Φ(t, s)xs +
t−1−s∑
j=0

Γ(t, t− j)bt−1−j

where r ∈ Z is arbitrary. Assuming that all eigenvalues of A are strictly
smaller than one in absolute, i.e. ρ(A) < 1, the term Φ(t, s)xs = At−sxs
converges to zero for s→ −∞. Hence, the particular solution becomes

x
(p)
t =

∞∑
j=0

Φ(t, t− j)bt−1−j =
∞∑
j=0

Γ(t, t− j)bt−1−j.

Noting that Φ(t, s) = At−s and Γ(t, s) = At−s, this result exactly matches
the backward solution (3.15).

A similar argument holds with respect to the forward solution. Because
ct = (ct − ct+1) + (ct+1 − ct+2) + · · ·+ (cs−1 − cs) + cs, for t > s,

ct = cs −
s−t−1∑
j=0

Φ−1(t+ 1 + j)bt+j

Hence, multiplying by Φ(t)

xt = Φ(t)ct = Φ(t)cs − Φ(t)
s−t−1∑
j=0

Φ−1(t+ 1 + j)bt+j.
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Because xs = Φ(s)cs,

xt = Φ(t)Φ−1(s)xs −
s−t−1∑
j=0

Φ(t)Φ−1(r)Φ(r)Φ−1(t+ 1 + j)bt+j

= Φ(t, s)xs −
s−t−1∑
j=0

Φ(t, r)Φ(r, t+ 1 + j)bt+j

= Φ(t, s)xs −
s−t−1∑
j=0

Φ(t, r)Φ−1(t+ 1 + j, r)bt+j

= Φ(t, s)xs −
s−t−1∑
j=0

Γ(t, t+ 1 + j)bt+j

where r ∈ Z is arbitrary. Assuming that all eigenvalues of A are strictly
greater than one in absolute, i.e. ρ(A) > 1, the term Φ(t, s)xs = At−sxs
converges to zero for s→∞. Hence, the particular solution becomes

x
(p)
t = −

∞∑
j=0

Φ(t, t+ 1 + j)bt+j = −
∞∑
j=0

Γ(t, t+ 1 + j)bt+j.

Noting that Φ(t, s) = At−s and Γ(t, s) = At−s, this results exactly in the
forward solution (3.16).

3.3 Two-dimensional Systems

Many theoretical economic models are reduced and investigated as two-
dimensional systems. Thus, we devote this section to the analysis of such
systems. They also encompass all qualitatively possible solutions. In case
the system is of dimension d = 2 a necessary and sufficient condition for
asymptotic stability is given in the following theorem.

Theorem 3.4. The homogeneous two-dimensional system has an asymptot-
ically stable solution if and only if

|tr(A)| < 1 + detA < 2. (3.18)

Proof. The characteristic polynomial, P(λ), of a 2 × 2 matrix is P(λ) =
λ2 − tr(A)λ+ detA. The roots of this quadratic polynomial are thus λ1,2 =
tr(A)±

√
tr2(A)−4 detA

2
. Suppose that the zero point is asymptotically stable then
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|λ1,2| < 1. But, in the case of real roots, this is equivalent to the following
two inequalities:

−2− tr(A) <
√

tr2(A)− 4 detA < 2− tr(A)

−2− tr(A) < −
√

tr2(A)− 4 detA < 2− tr(A).

Squaring the second inequality in the first line and simplifying gives: tr(A) <
1 + detA. Squaring the first inequality in the second line gives −1−detA <
tr(A). Combining both results gives the first part of the stability condition
(3.18). The second part follows from the observation that detA = λ1λ2 and
the assumption that |λ1,2| < 1. If the roots are complex, they are conjugate
complex, so that the second part of the stability (3.18) results from detA =
λ1λ2 = |λ1| |λ2| < 1. The first part follows from tr2(A) − 4 detA < 0 which
is equivalent to 0 < tr2(A) < 4 detA. This can be used to show that

4 (1 + detA− tr(A)) > 4 + tr2(A)− 4tr(A) = (2− tr(A))2 > 0.

which is the required inequality.
Conversely, if the stability condition (3.18) is satisfied and if the roots are

real, we have

−1 <
−2 +

√
tr2(A)− 4 detA

2
< λ1 =

tr(A) +
√

tr2(A)− 4 detA

2

<
tr(A) +

√
tr2(A) + 4− 4tr(A)

2

=
tr(A) +

√
(2− tr(A))2

2
< 1.

Similarly, for λ2. If the roots are complex, they are conjugate complex and we

have |λ1|2 = |λ2|2 = λ1λ2 = tr2(A)−tr2(A)+4 detA
4

= detA < 1. This completes
the proof.

The inequalities (3.18) are visualized in Figure 3.1 which is analogous to
the Figure 2.6 corresponding to the univariate difference equation of order
two. The two inequalties are satisfied when tr(A) and detA fall within the
triangle with vertices (2, 1), (0,−1), (−2, 1).

Phase Diagrams of Two-Dimensional Systems

An additional advantage of two-dimensional systems are that their quali-
tative properties can be easily visualized by a phase diagram. This allows
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1
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Figure 3.1: Stability Properties of Two-Dimensional Systems
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to classify the behavior of two-dimensional linear systems and all nonlin-
ear system which are locally conjugate to it. Consider for this purpose the
homogeneous first order system (3.5) written as a two equation system:8

xt+1 =

(
x1,t+1

x2,t+1

)
= Axt =

(
a11 a12

a21 a22

)(
x1,t

x2,t

)
; (3.19)

or equivalently

x1,t+1 = a11x1,t + a12x2,t (3.20)

x2,t+1 = a21x1,t + a22x2,t. (3.21)

It is clear that (0, 0)′ is an equilibrium point for this system. In order to
understand the dynamics of the system, we can draw two lines in the (x1, x2)-
diagram. The first line is given by all points such that the first variable does
not change, i.e. where x1,t+1 = x1,t. From equation (3.20), these points are
represented by a line with equation (a11 − 1)x1,t + a12x2,t = 0. Similarly, the
points where the second variable does not change is, from equation (3.21),
the line with equation a21x1,t + (a22 − 1)x2,t = 0. These two lines divide
the R × R-plane into four regions I, II, III, and IV as in figure 3.2. In this
example both lines have positive slopes, but this is not necessarily so.

The dynamics of the system in each of the four regions can be figured
out from the signs of the coefficients as follows. Suppose we start at a point
on the x1,t+1 − x1,t = (a11 − 1)x1,t + a12x2,t = 0 schedule then we know
that the first variable does not change. Now increase x2,t a little bit, but
leave x1,t unchanged. This moves us into region I or IV depending on the
sign of a12. If a12 is positive, this implies that x1,t+1 − x1,t > 0 so that
the first variable increases. Thus, we know that above the x1,t+1 − x1,t = 0
line, x1,t increases and that below this line x1,t decreases. We can indicate
this result in figure 3.2 by arrows from left to right in regions I and IV and
arrows from right to left in regions II and III. If a12 is negative, we obtain,
of course, the opposite result. Similarly, consider the schedule x2,t+1− x2,t =
a21x1,t+(a22−1)x2,t = 0 where the second variable does not change. Consider
next an increase in x1,t leaving x2,t unchanged. This moves us into region III
or IV. If the coefficient a21 is positive, this implies that x2,t+1 − x2,t > 0 so
that the second variable must increase. As before we can infer that below
the x2,t+1 − x2,t = 0 line x2,t increases whereas above this line x2,t decreases.
We can again indicate this behavior by arrows: upward arrows in regions
III and IV and downward arrows in regions I and II. If the sign of a21 is
negative, the opposite result is obtained. This type of analysis gives us a

8We may also interpret the systems as written in deviations from steady state.
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X2  t

X1  t

region I region II

region IV

region III

steady
state

schedule: X - X = 01  ,t+1 1  t

schedule:
X - X = 02  ,t+1 2  t

Figure 3.2: Example of a Phase Diagram
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phase diagram as in Figure 3.2. This diagram shows us the dynamics of
the system starting in the neighborhood of the equilibrium point. In this
example, the arrows indicate that, irrespective of the starting point, we will
move closer to the steady state. But this corresponds exactly to the definition
of an asymptotically stable equilibrium point (see Definition 1.2). Thus, we
conclude from this diagram that the steady state is an asymptotically stable
equilibrium point.

Of course, the configuration depicted in Figure 3.2 is not the only possible
one. In order to classify all qualitatively different configurations, we conju-
gate the system to a simpler one. If A has Jordan canonical form A = QJQ−1

then we make the variable transformation Yt = Q−1xt. This results in a new
first order homogeneous difference equation system:

yt+1 = Q−1xt+1 = Q−1Axt = Q−1AQQ−1xt = Jyt (3.22)

where J has one of the following three forms:

J =

(
λ1 0
0 λ2

)
distinct or repeated semisimple real eigenvalues

J =

(
λ 1
0 λ

)
repeated eigenvalue with only one independent eigenvector

J =

(
α β
−β α

)
complex eigenvalues: λ1,2 = α± ıβ

Note that the steady state is not affected by this variable transformation. It
is still the point (0, 0)′. Let us treat these three cases separately.

case 1: distinct or repeated semisimple real eigenvalues The variable
transformation has effectively decoupled the two-dimensional system
into two separate homogeneous first order difference equations with so-
lutions: y1,t = λt1y1,0 and y2,t = λt2y2,0 where y1,0 and y2,0 are given ini-
tial values. From the previous discussion we know that the steady state
is asymptotically stable if and only if both eigenvalues are smaller than
one in absolute value. Such a situation is plotted in Figure 3.3. The
arrows indicate that for every starting point the system will converge
towards the equilibrium point. As an example we have plotted four
trajectories starting at the points (1, 1), (1,−1), (−1, 1), and(−1,−1),
respectively.

Figure 3.4 displays a situation where the equilibrium point is unstable.
Indeed both eigenvalues are larger than one and the trajectories quickly
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Figure 3.3: Asymptotically Stable Steady State (λ1 = 0.8, λ2 = 0.5)

diverge in the directions indicated by the arrows. In the Figure, we
have plotted again four trajectories with the same starting values as
in the previous example. Only, if both initial values y1,0 and y2,0 are
equal to zero, will the system not diverge and remain bounded. It will
actually be stuck at the equilibrium point. An economic example of
this configuration will be discussed in Section 4.4.

Figure 3.5 shows an interesting configuration which is often encountered
in economic models, especially in those which involve rational expecta-
tions (see Sections 4.1 and 4.2 for examples). We have one eigenvalue
smaller than one in absolute value and one eigenvalue larger than one
in absolute value, i.e. |λ1| > 1 > |λ2|. This implies that the system is
expanding in the direction of the eigenvector corresponding to λ1, but
is contracting in the direction of the eigenvector corresponding to λ2.
This configuration of the eigenvalues leads to a saddle point equilibrium
(see Definition 1.5). Although the steady state is unstable, as almost all
trajectories diverge, there are some initial values for which the system
converges to the steady state. In Figure 3.5 all trajectories starting on
the y-axis converge to the steady state. Thus, given an initial value y20

for Y2,t, the requirement that the solution must be bounded uniquely
determines an initial condition for y1,t too, which in this reduced setting
is just y10 = 0. Thus, the solution is given by y1,t = 0 and y2,t = λt2y2,0
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Figure 3.4: Unstable Steady State (λ1 = 1.2, λ2 = 2)

for some initial value y2,0. Note that the saddle path, in contrast to
the other paths, is a straight line through the origin. This property is
carried over when the system is transformed back to its original vari-
ables. In fact, the solution becomes x1,t = q12λ

t
2y2,0 and x2,t = q22λ

t
2y2,0

where (q12, q22)′ is the eigenvector corresponding to λ2. Thus, the ratio
of x1,t and x2,t equals q12/q22 constant.9 As saddle point equilibria are
very prominent in economics, we investigate this case in depth in Sec-
tion 3.4. In particular, we will go beyond the two-dimensional systems
and analyze the role of initial values in detail.

When there are multiple eigenvalues with two independent eigenvec-
tors, A can again be reduced by a similarity transformation to a di-
agonal matrix. The trajectories are then straight lines leading to the
origin if the eigenvalue is smaller than one as in Figure 3.6, and straight
lines leading away from the origin if the eigenvalue is larger than one
in absolute terms.

When one eigenvalue equals one whereas the second eigenvalue is smaller
than one in absolute value, the system violates the hyperbolicity as-
sumption and a degenerate situation emerges. Whereas Y1,t remains at
its starting value y10, Y2,t converges to zero so that the system converges

9If q22 = 0, we take the ratio x2,t/x1,t which again defines a straight line through the
origin.
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Figure 3.5: Saddle Point Steady State (λ1 = 1.2, λ2 = 0.8)
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Figure 3.6: Repeated Roots with Asymptotically Stable Steady State (λ1 =
λ2 = 0.8)
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Figure 3.7: Degenerate Steady State (λ1 = 1, λ2 = 0.8)

to (y10, 0)′ as is exemplified by figure 3.7. Only when y10 = 0 will there
be a convergence to the steady state (0, 0). However, (0, 0) is not the
only steady state because the definition of an eigenvalue implies that
A− I is singular. Thus, there exists x∗ 6= 0 such that x∗ = Ax∗.

In case that the first eigenvalue equals minus one, there is no conver-
gence as y1,t will oscillate between y10 and −y10.

case 2: repeated eigenvalues with one independent eigenvector In this
case A can no longer be reduced to a diagonal matrix by a similarity
transformation. As J is no longer a diagonal matrix, the locus of all
points where y1,t does not change is no longer the x-axis, but is given
by the line with equation (λ − 1)y1,t + y2,t = 0. Figure 3.8 displays
this case with an eigenvalue of 0.8 which implies an asymptotically sta-
ble steady state. Note that, given our four starting points, the system
moves first away from the equilibrium point until it hits the schedule
where Y1,t does not change, then it changes direction and runs into the
steady state.

case 3: complex eigenvalues If the two conjugate complex eigenvalues
are λ1,2 = α± ıβ then A is similar to the matrix(

α β
−β α

)
= |λ|

(
cosω sinω
− sinω cosω

)
.
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Figure 3.8: Repeated eigenvalues one independent eigenvector (λ = 0.8)

where |λ| =
√
α2 + β2 and ω = tan−1

(
β
α

)
. Figure 3.9 shows the dy-

namics in the case of eigenvalues inside the unit circle. One can clearly
discern the oscillatory behavior and the convergence to the steady state.
Figure 3.10 displays a situation with an unstable steady state where
all trajectories move away from the steady state. Finally Figure 3.11
displays a degenerate case where the eigenvalues are on the unit circle.
In such a situation the system moves around its steady state in a circle.
The starting values are (0.25, 0.25), (0.5, 0.5), (1, 1), and (1.5, 1.5).

3.4 Boundary Value Problems under Ratio-

nal Expectations

In this section we discuss the general boundary value problem under rational
expectations. In these models there are, typically, not enough initial values to
pin down a unique solution. Thus, one has to resort to additional restrictions.
These restrictions come from the assumption that the solution must remain
bounded. In the well-behaved scenario, this will give just enough additional
initial values to determine a unique solution and the model is said to be
determinate (see also Section 1.1). Geometrically, this solution has the form
of a saddle path and the steady state is a saddle point.
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Figure 3.9: Complex eigenvalues with Stable Steady State (λ1,2 = 0.7± 0.2ı)
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A concise treatment of such models in the context of stochastic difference
equations was first given by Blanchard and Kahn (1980). Klein (2000) and
Sims (2001) provide further insights and solution approaches (see Chapter 5
for further details). As the stochastic setting delivers similar conclusions
with respect to uniqueness, we adopt the Blanchard-Kahn setup to the de-
terministic case by replacing rational expectations by perfect foresight. This
framework delivers first order affine nonautonomous difference equations of
the form:

xt = Axt−1 + bt, t ∈ Z. (3.23)

Throughout this section we make the following assumptions:

(i) A is a d× d invertible real matrix, i.e. A ∈ GL(d).

(ii) A is hyperbolic, i.e. A has no eigenvalues on the unit circle. Thus, we
can view the system (3.23) as the linearized version of a nonlinear one.

(iii) bt is bounded.
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In addition, we are given r initial values with 0 < r < d for period 0: 10

c1 = Rx0 (3.24)

where c1 is a given r-vector and R is a (r×d)-matrix of rank r. The simplest
case is the one where initial values are given for the first r variables:

x10 = c1
1, . . . , xr0 = c1

r,

or in matrix form

c1 =

c
1
1
...
c1
r

 =

1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 1 0 . . . 0




x10
...
xr0
xr+1,0

...
xd0


= (Ir, 0r×d−r)x0

If r < n, these initial conditions are not sufficient to pin a unique solu-
tion. There are still d − r degrees of freedom left. We therefore use as an
additional requirement that solutions have to be bounded. Thus, a rational
expectations model is a boundary value problem which consists of a difference
equation (3.23), an initial value condition (3.24), and a boundary condition.

The application of the superposition principle expresses the solution of
the difference equation (3.23) as the sum of the general solution of the ho-

mogeneous equation x
(g)
t and a particular solution of the nonhomogeneous

equation x
(p)
t :

xt = x
(g)
t + x

(p)
t

= QΛtQ−1c+ x
(p)
t

where the d-vector c is yet to be determined. Taking t = 0, x0 = c + x
(p)
0

or c = x0 − x
(p)
0 . Given a particular solution, the initial values given by

equation (3.24) thus determine c only up to d− r degrees of freedom so that
we are lacking d− r additional boundary conditions.

In order to solve the boundary value problem, we partition the Jordan
form of A according to the moduli of the eigenvalues. Let A = Q−1JQ
where J is the Jordan form of A and where the columns of Q consist of the

10The case r = 0 can be treated in a similar manner (See the example in Section 4.4).
If r = d there are just enough initial conditions and the solution procedure of Section 3.2
can be directly applied.
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corresponding eigenvectors (generalized eigenvectors). Define the number of
possibly multiple eigenvalues strictly smaller than one by ds and the number
of eigenvalues strictly larger than one by du so that d = ds+du. Assume that
the eigenvalues are ordered in terms of their moduli, then define the matrices
Λ1 and Λ2 as follows:

Λ1 =

(
J1 0
0 0

)
and Λ2 =

(
0 0
0 J2

)
where J1 consists of the Jordan segments corresponding to the eigenvalues
smaller than one and J2 to the segments corresponding to the eigenvalues
greater than one. We focus on the case where the zero solution is a saddle
point, meaning that there exists at least two eigenvalues λ1 and λ2 such that
|λ1| < 1 and |λ2| > 1 (see Definition 1.5).11 With this notation, we propose
the following particular solution:

x
(p)
t =

∞∑
j=0

QΛj
1Q
−1bt−j −

∞∑
j=1

QΛ−j2 Q−1bt+j (3.25)

The reader is invited to verify that this is indeed a solution to equation (3.23).
The solution proposed in equation (3.25) has the property that “variables”
corresponding to eigenvalues smaller than one are iterated backwards whereas
those corresponding to eigenvalues larger than one are iterated forwards. This
ensures that {x(p)

t } remains bounded whenever {bt} is. The general solution
therefore is of the form

xt = QΛt
1Q
−1c+QΛt

2Q
−1c+

∞∑
j=0

QΛj
1Q
−1bt−j −

∞∑
j=1

QΛ−j2 Q−1bt+j. (3.26)

The Jordan decomposition of A gives rise to a splitting of Rd into the di-
rect sum of two subspaces Ls and Lu, called the stable and the unstable
subspace, i.e. Rd = Ls ⊕ Lu. Thereby Ls is spanned by the (generalized)
eigenvectors corresponding to eigenvalues strictly smaller than one and has
therefore dimension ds = dimLs whereas Lu is spanned by the (generalized)
eigenvectors corresponding to eigenvalues strictly larger than one and has
dimension du = dimLu. Given the ordering of the eigenvalues from before
Ls is spanned by the first ds columns of Q whereas Lu is spanned by the
last du columns of Q. Denote the projector of Rd onto Ls along Lu by πs

11If ds or du equal zeros then the terms corresponding to the matrices Λ1 and Λ2 are
omitted.
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and the projector of Rd onto Lu along Ls by πu, then the solution given in
equation (3.26) may be rewritten as

xt = QJ tQ−1c+
∞∑
j=0

QJ jQ−1πsbt−j −
∞∑
j=1

QJ−jQ−1πubt+j

= Atc+
∞∑
j=0

Ajπsbt−j −
∞∑
j=1

A−jπubt+j.

The equivalence between the two representations of the solution is evident
by noting (see f.e. Meyer, 2000, section 5.9) that

πs = Q

(
Id1 0
0 0

)
Q−1 πu = Q

(
0 0
0 Id2

)
Q−1.

The final step consists in finding the constant c. There are two types of
restrictions: the first one are the initial values given by equation (3.24); the
second one are the requirement that we are only interested in non-exploding
solutions. Whereas the first type delivers r restrictions because rank(R) = r,
the second type delivers d2 = d− r restrictions. Thus, c must be determined
according to the following equation system:

initial values: Rc = Rx0 −Rx(p)
0 = c1 −Rx(p)

0

no explosive solutions: Q(2) c = Q(21)c1 +Q(22)c2 = 0
(3.27)

where Q−1 =

(
Q(11) Q(12)

Q(21) Q(22)

)
, Q(2) =

(
Q(21) ... Q(22)

)
and c = (c′1, c

′
2)′ and

where the partitioning of Q−1 and c conforms to the partitioning of the
eigenvalues. Note that Q(2) is a du × d matrix. Depending on whether the
number of independent restrictions is greater, smaller or equal to d, several
situations arise.

Theorem 3.5 (Blanchard-Kahn). Let A ∈ GL(n) be hyperbolic then the
nonhomogeneous difference equation (3.23) with initial values given by (3.24)
has a unique nonexplosive solution if and only if

rank

(
R
Q(2)

)
= d. (3.28)

The solution is given by equation (3.26) with c uniquely determined from (3.27).

A necessary condition is that r = rank(R) = ds: the number of eigen-
values smaller than one, d1, is equal to the number of independent initial
conditions, r = rank(R).
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In many instances the values of the first r variables at given time, say
time zero, are given. This is the case when there are exactly r predetermined
variables in the system. The initial values then fix the first r values of c:
c1 = x10 − x(p)

10 where x10 and x
(p)
10 denote the first r values of x0 and x

(p)
0 .

Corollary 3.1. If R = (Ir, 0r×(d−r)) with r = rank(R) = ds, the necessary
and sufficient condition (3.28) reduces to Q(22) is invertible. Given that c1 is
fixed by the initial conditions, c2 = −(Q(22))−1Q(21)c1.

If k = rank(R) > ds then there are too many restrictions and there is no
nonexplosive solution. We may, however, soften the boundedness condition
and accept explosive solutions in this situation.

If r = rank(R) < ds there are not enough initial conditions so that it
is not possible to pin down c uniquely. We thus have an infinite amount
of solutions and we call such a situation indeterminate. The multiplicity of
equilibria or indeterminacy opens up the possibility of sunspot equilibria.12

Sunspot equilibria have been introduced by Cass and Shell (1983), Azariadis
(1981), and Azariadis and Guesnerie (1986) (see also Azariadis (1993) and
Farmer (1993)).

3.5 Nonnormal Difference Equations

12Sunspot equilibria explore the idea that extraneous beliefs about the state of nature
influence economic activity. The disturbing feature of sunspot equilibria is that economic
activity may change across states although nothing fundamental has changed.



Chapter 4

Examples of Linear
Deterministic Systems of
Difference Equations

4.1 Exchange Rate Overshooting

4.1.1 Introduction

A classic example for a system with one predetermined and one so-called
”jump”-variable is the exchange rate overshooting model by Dornbusch (Dorn-
busch (1976)).1 The model describes the behavior of the price level and the
exchange rate in a small open economy. It consists of an IS equation, a price
adjustment equation, and a LM equation. In addition, the uncovered interest
rate parity (UIP) is assumed together with rational expectations:

ydt = δ(et + p∗ − pt)− σ(rt − pt+1 + pt), (IS)

pt+1 − pt = α(ydt − y), (price adjustment)

m− pt = φy − λrt, (LM)

rt = r∗ + et+1 − et, (UIP)

where the parameters δ, σ, α, φ, and λ are all positive. The variables are
all expressed in logarithms. The IS-equation represents the dependence of
aggregate demand ydt on the relative price of foreign to home goods and on
the real interest rate. A devaluation of the exchange rate2, an increase in the

1Rogoff (Rogoff (2002)) provides an appraisal of this influential paper.
2The exchange rate et is quoted as the price of a unit of foreign currency in terms of

the domestic currency. An increase in et therefore corresponds to a devaluation of the
home currency.

101
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foreign price level, p∗, or a decrease in the domestic price level pt all leads to an
increase in aggregate demand. On the other hand, an increase in the domestic
nominal interest rate, rt, or a decrease in the expected inflation rate, pt+1−pt,
lead to a reduction in aggregate demand. A crucial feature of the Dornbusch
model is that prices are sticky and adjust only slowly. In particular, the price
adjustment pt+1 − pt is proportional to the deviation of aggregate demand
from potential output y. If aggregate demand is higher than potential output,
prices increase whereas, if aggregate demand is below potential output, prices
decrease. In particular, the price level is treated as predetermined variable
whose value is fixed in the current period. The LM-equation represents
the equilibrium on the money market. The demand for real balances, m −
pt, depends positively on potential output3 and negatively on the domestic
nominal interest rate. The model is closed by assuming that the uncovered
interest parity holds where r∗ denotes the foreign nominal interest rate. In
contrast to the price level, the exchange rate is not predetermined. It can
immediately adjust within the current period to any shock that may occur.
For simplicity, the exogenous variables y, m, r∗, and p∗ are assumed to remain
constant.

This system can be reduced to a two-dimensional system in the exchange
rate and the price level:

et+1 − et =
1

λ
(φy + pt −m)− r∗ (4.1)

pt+1 − pt =
α

1− ασ

[
δ (et + p∗ − pt)− y −

σ

λ
(φy −m+ pt)

]
(4.2)

The first equation was obtained by combining the LM-equation with the
UIP. The second equation was obtained by inserting the IS-equation into
the price adjustment equation, replacing the nominal interest rate using the
LM-equation and then solving for pt+1 − pt.

The steady state of this system is obtained by setting et = ess and pt = pss

for all t and solving for this two variables:

pss = λr∗ +m− φy (4.3)

ess = pss − p∗ +
1

δ
(y + σr∗) (4.4)

In the steady state, UIP and the price adjustment imply rt = r∗ and ydt = y.
The system can be further reduced by writing it in terms of deviations from

3This represents a simplification because money demand should depend on aggregate
demand, ydt , and not on potential output, y. However, we adopt this simplified version for
expositional purposes.
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steady state:(
et+1 − ess
pt+1 − pss

)
=

 1 1
λ

αδ

1− ασ
1−

α(δ + σ
λ
)

1− ασ

(et − ess
pt − pss

)

= Φ

(
et − ess
pt − pss

)
(4.5)

4.1.2 Analysis of the Dynamic Properties

The dynamic behavior of the system (4.5) depends on the eigenvalues of Φ.
Denote the characteristic polynomial of Φ by P(µ) and the two corresponding
eigenvalues by µ1 and µ2, then

P(µ) = (µ− µ1)(µ− µ2) = µ2 − tr(Φ)µ+ det Φ

Without additional assumptions on the parameters, it is impossible to obtain
further insights into the qualitative behavior of the system. We suppose that
the price adjustment is sufficiently slow. Specifically, we assume that

0 < ασ < 1 and α <
4

(2 + 1/λ)(δ + 2σ)
,

we obtain:

trΦ = µ1 + µ2 = 2− α

1− ασ

(
δ +

σ

λ

)
< 2

det Φ = µ1µ2 = 1− α

1− ασ

(
δ +

σ

λ
+
δ

λ

)
< 1

4 = (trΦ)2 − 4 det Φ =

[
α

1− ασ

(
δ +

σ

λ

)]2

+
4αδ

λ(1− ασ)
> 0

P(1) = (1− µ1)(1− µ2) = − αδ

λ(1− ασ)
< 0

P(−1) = (1 + µ1)(1 + µ2) = 4− α

1− ασ

[
2
(
δ +

σ

λ

)
+
δ

λ

]
> 0

where 4 denotes the discriminant of the quadratic equation. The above
inequalities have the following implications for the two eigenvalues:

� 4 > 0 implies that the eigenvalues are real;

� P(1) < 0 implies that they lie on opposite sides of 1;

� trΦ < 2 implies that the sum of the eigenvalues is less than 2;
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� P(−1) > 0 finally implies that one eigenvalue, say µ1, is larger than 1
whereas the second eigenvalue, µ2, lies between −1 and 1.

Because the eigenvalues are distinct, we can diagonalize Φ as Φ = QΛQ−1

where Λ is a diagonal matrix with µ1 and µ2 on its diagonal. The column of
the matrix Q consist of the eigenvectors of Φ. Multiplying the system (4.5)
by Q−1, we obtain the transformed system:(

êt+1

p̂t+1

)
= Q−1

(
et+1 − ess
pt+1 − pss

)
= Q−1ΦQQ−1

(
et − ess
pt − pss

)
=

(
µ1 0
0 µ2

)(
êt
p̂t

)
(4.6)

Through this change of variables we have obtained a decoupled system: the
original two-dimensional system is decomposed into two one-dimensional ho-
mogenous difference equations. These two equations have the general solu-
tion:

êt = c1µ
t
1

p̂t = c2µ
t
2

where c1 and c2 are two constants yet to be determined. Transforming the
solution of the decoupled systems back into the original variables yields:

et = ess + c1q11µ
t
1 + c2q12µ

t
2 (4.7)

pt = pss + c1q21µ
t
1 + c2q22µ

t
2 (4.8)

where Q = (qij)i,j=1,2. Because µ1 > 1 this represents an unstable system.
As time evolves the unstable eigenvalue will eventually dominate. In order to
avoid this explosive behavior, we set c1 equal to zero. The second constant
c2 can be determined from the boundary condition associated with the pre-
determined variable, in our case the price level. Suppose the system starts
in period zero and we are given a value p0 for the price level in this period,
then according to equation (4.8) c2 = (p0−pss)

q22
, provided q22 6= 0. Combining

all these elements with the equations (4.7) and (4.8) leads to the equation
for the saddle path:

et = ess +
q12

q22

(pt − pss) (4.9)

Next, we show that the saddle path is downward sloping, i.e. that q12
q22

<
0. This can be established by investigating the defining equations for the
eigenvector corresponding to the second eigenvalue µ2. They are given by
(φ11−µ2)q12+φ12q22 = 0 and φ21q12+(φ22−µ2)q22 = 0. Because (φ11−µ2) > 0



4.1. EXCHANGE RATE OVERSHOOTING 105

and φ12 > 0, q12 and q22 must be of opposite sign. The same conclusion is
reached using the second equation. This reasoning also shows that q22 6= 0.
Suppose that q22 = 0 then q12 must also be zero because (φ11 − µ2) > 0.
This, however, contradicts the assumption that (q12, q22)′ is an eigenvector.
Note that although the eigenvector is not uniquely determined, its direction
and thus the slope of the saddle path is.

The Dornbusch model is most easily analyzed in terms of a phase diagram
representing the price level and the exchange rate as in figure 4.1. The graph
consists of two schedules: pt+1 − pt = 0 and et+1 − et = 0. Their intersection
determines the steady state denoted by S. These two schedules correspond
to the equations (4.4) and (4.3). The et+1− et = 0 schedule does not depend
on the exchange rate and is therefore horizontal intersecting the price axis
at pss. Above this schedule the exchange rate depreciates whereas below
this schedule the exchange appreciates, according to equation (4.5). This
is indicated by arrows pointing to the right, respectively to the left. The
pt+1 − pt = 0 schedule is upward sloping. To its left, prices are decreasing
whereas to its right prices are increasing, according to equation (4.5). The
two schedules divide the e-p-quadrant into four regions: I, II, III, and IV. In
each region the movement of e and p is indicated by arrows. In the Dornbusch
model the price level is sticky and considered to be a predetermined variable.
Suppose that in period 0 its level is given by p0. The exchange rate in this
period is not given, but endogenous and has to be determined by the model.
Suppose that the exchange rate in period 0 is at a level corresponding to
point A. This point is to the left of the pt+1 − pt = 0 schedule and above
the et+1 − et = 0 schedule and therefore in region I. This implies that the
price level has to fall and the exchange rate to increase. The path of e and
p will continue in this direction until they hit the et+1 − et = 0 schedule.
At this time the system enters region IV and the direction is changed: both
the price level and the exchange rate decrease. They will so forever. We are
therefore on an unstable path. Consider now an exchange rate in period 0
corresponding to point B. Like A, this point is also in region I so that the
exchange rate increases and the price level decreases. However, in contrast to
the previous case, the path starting in B will hit the pt+1−pt = 0 schedule and
move into region II. In this region, both the price level and the exchange rate
increase forever. Again this cannot be a stable path. Thus, there must be an
exchange rate smaller than the one corresponding to point B, but higher than
the one corresponding to point A, which sets the system on a path leading
to the steady steady. This is exactly the exchange rate which corresponds
to the saddle path given by equation (4.9). In this way the exchange rate in
period 0 is pinned down uniquely by the requirement that the path of (et, pt)

′

converges.
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Figure 4.1: Dornbusch’s Overshooting Model

4.1.3 Effects of an Increase in Money Supply

The phase diagram is also very convenient in analyzing the effects of changes
in the exogenous variables. Consider, for example, an unanticipated perma-
nent increase in money supply. This moves, according to equation (4.3), the
et+1− et = 0 schedule up and, according to (4.4), the pt+1−pt = 0 to the left
as shown in figure 4.2. The steady state therefore jumps from Sold to Snew
and the new saddle path goes through Snew. Suppose that the price level
was initial at pssold. As the price level cannot react to the new situation it will
remain initially at the old steady state level. The exchange rate, however,
can adapt immediately and jumps to e0 such that the system is on the new
saddle path. As this value lies typically above the new steady level, we say
that the exchange rate overshoots. The reason for this ”excess” depreciation
of the exchange rate is the stickiness of the price level. In the short-run,
the exchange rate carries all the burden of the adjustment. As time evolves
the system moves along its saddle path to its new steady state. During this
transition the price level increases and the exchange rate appreciates. Thus,
the immediate reaction of the economy is a depreciation of the exchange rate
coupled with an expected appreciation.
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ing Model



108 CHAPTER 4. EXAMPLES: LINEAR SYSTEMS

4.2 Optimal Growth Model

4.2.1 Introduction

In contrast to the previously discussed Solow model (see section 2.3.2), the
optimal growth model seeks to determine the saving-consumption decision
optimally.4 Consider for this purpose a planer who seeks the optimize the
discounted utility stream from per capita consumption (ct). If Ct and Lt
denote aggregate consumption and aggregate labor input in period t then per
capita consumption is given by ct = Ct/Lt. As before labor input increases
at the exogenously given rate µ > 0, i.e. Lt+1 = (1 + µ)Lt. The planner is
assumed to maximize the following Bentham type objective function:

V (c0, c1, · · · ) =
∞∑
t=0

βtLtU(ct)

= L0

∞∑
t=0

(β(1 + µ))tU(ct), 0 < β(1 + µ) < 1. (4.10)

The constant β is called the subjective discount rate. The period utility func-
tion U : R+ → R is continuously differentiable, increasing, strictly concave,
and, in order to avoid corner solutions, fulfills limc→0 U

′(c) =∞.5

The rest of the specification is exactly the same as for the Solow model
(see section 2.3.2): Output is produced according to a neoclassical aggregate
production satisfying the Inada conditions. Recognizing that investment in
period t, It equals It = Kt+1 − (1 − δ)Kt the national accounting identity
becomes:

Ct + It = Ct +Kt+1 − (1− δ)Kt = F (Kt, Lt)

or in per capita terms

ct + (1 + µ)kt+1 − (1− δ)kt = f(kt)

respectively,

ct + (1 + µ)kt+1 = f(kt) + (1− δ)kt = h(kt). (4.11)

4The optimal growth model originates in the work of Ramsey (1928). It has been
widely analyzed and stands at the heart of the Real Business Cycle approach. An extensive
treatment of this model together with additional references can be found in Stokey and
Lucas Jr. (1989).

5Instead of a Bentham type objective function one could also work with the conventional
one: V (c0, c1, · · · ) =

∑∞
t=0 β

tU(ct) with 0 < β < 1. This modification will, however, not
change the qualitative implications of the model.
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The first order condition for the optimum is given by the Euler-equation,
sometimes also called the Keynes-Ramsey rule:

U ′(ct) = βh′(kt+1)U ′(ct+1) (4.12)

Thus, the Euler-equation equates the marginal rate of transformation, 1/h′(kt+1),
to the marginal rate of substitution, βU ′(ct+1)/U ′(ct).

The equation system consisting of the transition equation (4.11) and the
Euler-equation (4.12) constitutes a nonlinear difference equation system. The
analysis of this system proceeds in the usual manner. First, we compute
the steady state(s). Then we linearize the system around the steady state.
This gives a linear homogeneous difference equation in terms of deviations
from steady state. We find the solution of this difference equation using
the superposition principle. Finally, we select, if possible, one solution using
initial conditions and boundedness arguments.

4.2.2 Steady State

The steady state (k∗, c∗) is found by setting c∗ = ct = ct+1 and k∗ = kt = kt+1

in equations (4.11) and (4.12). This results in the nonlinear equation system:

∆k = 0 : c∗ = f(k∗)− (δ + µ)k∗ (4.13)

∆c = 0 : βh′(k∗) = β(f ′(k∗) + 1− δ) = 1. (4.14)

The ∆c = 0 equation is independent of c and of the shape of the utility
function U . This equation therefore determines k∗. The first equation viewed
as a function c of k has an inverted U-shape in the (k, c)-plane as can be
deducted from the following reasoning:

� k = 0 implies c = 0. The derivative dc/dk = f ′(k)− (δ + µ) evaluated
at k = 0 is strictly positive because of the Inada conditions.

� The function reaches a maximum at k∗∗ determined by dc/dk = f ′(k∗∗)−
(δ + µ) = 0. Because β(1 + µ) < 1 by assumption, k∗ < k∗∗. k∗∗ is
called the modified golden rule capital stock. It is larger than the op-
timal capital stock because of discounting.

� For k > k∗∗ the ∆k = 0 schedule declines monotonically and crosses
the x-axis at kmax. This is the maximal value of capital sustainable in
the long-run. It is achieved when the consumption is reduced to zero.
Thus, kmax is determined from the equation f(kmax) = (δ + µ)kmax.

The shape of both schedules is plotted in figure 4.3 as the blue lines. They
cross at point E which corresponds to the unique nonzero steady state of the
system.
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4.2.3 Discussion of the Linearized System

The equations (4.11) and (4.12) constitute a two-dimensional system of non-
linear difference equations of order one or, after inserting h(kt)− (1 + µ)kt+1

for ct and h(kt+1)− (1+µ)kt+2 for ct+1, a single nonlinear difference equation
of order two. We therefore need two boundary conditions to pin down a so-
lution uniquely. One condition is given by the initial value of the per capita
capital stock k0 > 0.

In order to study the dynamics of the system in detail, rewrite the Euler
equation (4.12) as

U ′(ct+1)− U ′(ct) = [1− βh′(kt+1)]U ′(ct+1). (4.15)

From this equation we can deduce that ct+1 ≥ ct when kt+1 < k∗ and vice
versa. Thus, to left of the (∆c = 0)-schedule consumption rises whereas to
the right consumption falls. Similarly, the transition equation (4.11) implies
that kt+1 ≥ kt when ct is lower than the corresponding c∗ implied by the
(∆k = 0)-schedule. Thus, the two schedules divide the nonnegative orthant
of the (k, c)-plane in four regions. The dynamics in these four regions is
indicated in figure 4.3 by orthogonal arrows. In the region to the left of
the (∆c = 0)-schedule and above the (∆k = 0)-schedule, i.e. the north-
west region, consumption would increase whereas the capital intensity would
decrease. This dynamics would continue until the c-axis is hit. When this
happens, the economy has no capital left and therefore produces nothing but
consumes a positive amount. Such a situation is clearly infeasible. Paths with
this property have therefore to be excluded. Starting at k0, there is, however,
one path, the saddle path, where the forces which lead to explosive paths,
respectively infeasible paths, just offset each other and lead the economy to
the steady state. This is the red line in figure 4.3.

The algebraic analysis requires the linearization of the nonlinear equation
system (4.11) and (4.12). This leads to:(

1 + µ 0
βU ′(c∗)h′′(k∗) U ′′(c∗)

)(
kt+1 − k∗
ct+1 − c∗

)
=

(
β−1 −1
0 U ′′(c∗)

)(
kt − k∗
ct − c∗

)
where we used the fact that βh′(k∗) = 1. Given that µ > 0 and U ′′(c∗) < 0,
the matrix on the left hand side is invertible. This then leads to the following
linear first order homogenous system:(
kt+1 − k∗
ct+1 − c∗

)
=

1

1 + µ

(
β−1 −1

R−1
A (c∗)h′′(k∗) −βR−1

A (c∗)h′′(k∗) + (1 + µ)

)(
kt − k∗
ct − c∗

)
= Φ

(
kt − k∗
ct − c∗

)
(4.16)
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where RA(c∗) equals −U ′′(c∗)/U ′(c∗) > 0, the absolute risk aversion coeffi-
cient evaluated at the steady state.6 As discussed in section 1.3.2 and 3.3, the
dynamics of the system is determined by the eigenvalues of Φ. Denote the
characteristic polynomial of Φ by P(λ) and the corresponding eigenvalues by
λ1 and λ2, then we have

P(λ) = (λ− λ1)(λ− λ2) = λ2 − tr(Φ)λ+ det Φ

with

trΦ = λ1 + λ2 = 1 + [β(1 + µ)]−1 − βR−1
A (c∗)h′′(k∗)/(1 + µ) > 2

det Φ = λ1λ2 =
1

β(1 + µ)
> 1

4 = (trΦ)2 − 4 det Φ = [1− (β(1 + µ))−1]2

+
βR−1

A (c∗)h′′(k∗)

1 + µ

[
βR−1

A (c∗)h′′(k∗)

1 + µ
− 2− 2

β(1 + µ)

]
> 0

P(1) = 1− trΦ + det Φ =
βR−1

A (c∗)h′′(k∗)

1 + µ
< 0

where 4 denotes the discriminant of the quadratic equation and where we
used the fact that h′′ < 0. The above inequalities have the following impli-
cations for the two eigenvalues:

� 4 > 0 implies that the eigenvalues are real and distinct;

� trΦ > 2 implies that at least one eigenvalue is greater than 1;

� P(1) < 0 then implies that they lie on opposite sides of 1;

� P(0) = det Φ > 1 finally implies that one eigenvalue, say λ1, is larger
than 1 whereas the second eigenvalue, λ2, lies between 0 and 1.

Because the eigenvalues are distinct, we can diagonalize Φ as Φ = QΛQ−1

where Λ is a diagonal matrix with λ1 and λ2 on its diagonal. We take
λ1 > 1 > λ2 > 0. The column of the matrix Q = (qij) consist of the
eigenvectors of Φ. Thus, the solution can be written as

kt − k∗ = c1q11λ
t
1 + c2q12λ

t
2 (4.17)

ct − c∗ = c1q21λ
t
1 + c2q22λ

t
2. (4.18)

6This concept is intimately related to the intertemporal elasticity of substitution in

this context. In particular, for the U(c) = c1−α−1
1−α the coefficient of relative risk aversion

RR = cRA = α is just the inverse of the intertemporal elasticity of substitution.
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Because λ1 > 1 this represents an unstable system. As time evolves the
unstable eigenvalue will eventually dominate. In order to avoid this explosive
behavior, we set c1 equal to zero. The second constant c2 can be determined
from the boundary condition associated with the predetermined variable.
Suppose the system starts in period zero and we are given a value k0 for the
capital intensity in this period, then according to equation (4.17) c2 = (k0−k∗)

q12
,

provided q12 6= 0. Combining all these elements with the equations (4.17)
and (4.18) leads to the equation for the saddle path:

ct = c∗ +
q22

q12

(kt − k∗) (4.19)

Next, we show that the saddle path is upward sloping, i.e. that q22
q12

> 0 as
shown by the red line in Figure 4.3. This can be verified by manipulating the
defining equations for the eigenvector corresponding to the second eigenvalue
λ2. They are given by (φ11−λ2)q12+φ12q22 = 0 and φ21q12+(φ22−λ2)q22 = 0.
Because (φ11−λ2) > 0 and φ12 < 0, q12 and q22 are of the same sign. The same
conclusion is reached using the second equation. This argument also shows
that q12 6= 0. Suppose that q12 = 0 then q22 must also be zero because φ12 =
−1

1+µ
< 0. This, however, contradicts the assumption that (q12, q22)′ is an

eigenvector. Note that although the eigenvector is not uniquely determined,
its direction and thus the slope of saddle path is.

4.2.4 Some Policy Experiments

In the following we discuss two policies. The first one analyzes the introduc-
tion of a tax on the return to capital. The second one investigates the effects
of an increase in government expenditures.

Taxation of Capital

Suppose that the government levies a proportional tax on the gross return
to capital. For simplicity, we assume that the revenues from the tax are just
wasted. Therefore only the Euler equation (4.12) is affected. The new Euler
equation then becomes

U ′(ct) = β(1− τ)h′(kt+1)U ′(ct+1) (4.20)

where τ is the tax rate with 0 < τ < 1. The transition equation for capital
is not altered. The new ∆c = 0 schedule then is

∆c = 0 : β(1− τ)h′(k∗) = β(1− τ)(f ′(k∗) + 1− δ) = 1.
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This implies that an increase in the tax rate τ will lower the steady state
capital stock. The tax is thus distortionary.

The evolution of consumption and capital can best be understood by
examining the corresponding phase diagram in Figure 4.4. Starting from
the initial steady state Eold, the introduction of the tax implies that the
new steady state Enew involves a lower steady state capital stock k∗new. This
lower capital stock is achieved by raising consumption. On impact, consump-
tion jumps from c∗old to c0 such that the point (k0, c0) is on the saddle path
corresponding to the new steady state. The capital stock remains initially
unaffected because it is predetermined. Over time both consumption and
capital start to decrease along the new saddle path to reach the new steady
state.
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Increase in Government Expenditures

Next we consider a permanent increase in government expenditures. These
expenditures are deducted from output before the investment/consumption
decision by the households takes place. Such a policy will affect only the
resource constraint, i.e. the national accounting, but leaves the Euler equation
unchanged. Thus, the steady state capital stock remains unchanged by this
policy. Given that this policy is not announced in advance, consumption
adjusts immediately by falling to its new steady state value. There is no
dynamics. Only the distribution of consumption between private and public
use is affected.

Denoting government expenditures by g, the national accounting iden-
tity (4.11) becomes

ct + g + (1 + µ)kt+1 = f(kt) + (1− δ)kt = h(kt). (4.21)

The ∆k = 0 schedule changes accordingly:

∆k = 0 : c∗ = f(k∗)− (δ + µ)k∗ − g.

Thus, starting initially with no government expenditures, the schedule is
shifted down by g as shown in figure 4.5. Consumption reacts immediately
and drops from its old steady state value c∗0 to its new one c∗1.

In contrast to the previously discussed policies which were all unantici-
pated and permanent, we analyze a transitory increase in government expen-
ditures which is unanticipated by the time of announcement. More precisely,
in period t0 the government introduces unexpectedly expenditures by an
amount g > 0, but announces credibly at the same time that it will discon-
tinue this policy in period t1 and return to g = 0. The dynamics of this
policy is shown in figure 4.5. On impact at time t0, consumption will drop
from c∗0 to c0 > c∗1. Thus, the reduction in consumption is smaller than in
the permanent case. This puts the system on an unstable path shown in
green in figure 4.5. On this path, capital is continuously lowered whereas
consumption increases. At time t1 when the policy is reverted as expected,
this unstable path hits the saddle path corresponding to the old steady state.
Capital then reaches its lowest value k1. From then on, the economy moves
along the old saddle path back to the old equilibrium E0 : (c∗0, k

∗). Capital
then starts to grow again. In the long-run the economy moves back to the
old steady state.7

7See Judd (1985) for further details of this type of analysis in a continuous framework.
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4.2.5 An Instructive Special Case

The nonlinear system of difference equations (4.11) and (4.12) has in general
no analytical solution so that one has to resort to the linearized version
to study its local behavior around the steady state. There is, however, one
particular specification which allows for an analytical solution. Set µ = 0 and
allow for full depreciation within a period, i.e. δ = 1, furthermore assume that
the utility function is logarithmic, i.e U(c) = ln c and that the production
function is Cobb-Douglas, i.e. f(k) = Akα, A > 0 and 0 < α < 1. With
these simplifications, the equation system (4.11) and (4.12) becomes:

ct + kt+1 = Akαt
1

ct
= αβAkα−1

t+1

1

ct+1

This system can be rewritten as a nonlinear single equation difference equa-
tion in the capital intensity by eliminating ct and ct+1:

1

Akαt − kt+1

=
αβAkα−1

t+1

Akαt+1 − kt+2

1

(Akαt /kt+1)− 1
=

αβ

1− (kt+2/Akαt+1)
.

This second order equation can be reduced to a first order one by recognizing
that st+1 = kt+2

Akαt+1
and st = kt+1

Akαt
are the savings rates of the economy in periods

t+ 1 and t:

st+1 = g(st) = (1 + αβ)− αβ

st
. (4.22)

This nonlinear difference equation is a Riccati type equation which is best
analyzed by examining the graph of the function g in Figure (4.6) for st > 0.8

Obviously, there are two steady states s∗ = αβ and s∗ = 1. The stability
of these two fixed points can be characterized by applying Theorem 1.2.
Indeed, the derivative of g evaluated at the two fixed points is

g′(s∗) =
αβ

(s∗)2
=

{
1
αβ
> 1, s∗ = αβ;

αβ < 1, s∗ = 1.

Hence, we conclude that s∗ = αβ is an unstable (exploding) fixed point
whereas s∗ = 1 is an exponentially stable fixed point. The special functional
form allows for the derivation of further properties. If s0 >

αβ
1+αβ

the whole

8As these type of equations have many interesting properties, they have induced a large
literature. An early contribution most relevant for this problem is due to Brand (1955).
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orbit will deliver positive savings rates. Moreover, if s0 6= αβ, the savings
rates converge monotonically to one, i.e. limt→∞ st = limt→∞ ϕ(s0, t) = 1.
If we allow the economy to borrow at no interest such that st can become
negative, the fixed point s∗ = 1 is globally stable, provided s0 6= αβ. To see
this, enlarge Figure 4.6 to cover also the arm of the hyperbola g for negative
savings rates.9

We now compare the two fixed points from an economic point of view.
s∗ = 1 means that the agents would consume nothing and save the whole
output. Such a situation cannot be optimal. Thus, the only economically
sensible fixed point is s∗ = αβ. This implies that the savings rate must be
set immediately equal to αβ and remain constant thereafter.

Based on this consideration, the log of k follows a first order linear dif-
ference equation:

ln kt+1 = ln(αβA) + α ln(kt).

The steady state for this equation is ln(k∗) = ln(αβA)
1−α . Hence, ln kt+1 −

ln(k∗) = α(ln kt − ln(k∗)) and the solution is

ln kt − ln(k∗) = αt(ln k0 − ln(k∗)), for any k0 > 0.

4.3 A Two-Country Solow Model

In this example we consider two countries A and B. These two countries share
the same technology, i.e. they have the same production function f(k) where
k is the capital intensity. The savings rate s, 0 < s < 1, the depreciation
rate δ, 0 < δ ≤ 1, and the population growth rate µ > 0 are also equal in
both countries. Hence, in a closed economy context, the capital intensity in
both countries follows the fundamental Solow difference equation (2.16):

kt+1 =
1− δ
1 + µ

kt +
s

1 + µ
f(kt) = g(kt)

where f is assumed to the same properties as in Section 2.3.2. The only
difference between the two countries is that the capital intensity in period 0
is higher in country A compared t country B. In particular, we assume that

kB0 < kA0 < k∗

where k∗ denotes the steady state of the difference equation.

9We can allow for st = 0 by defining st+1 = ∞. st+2 then equals 1 + α and the
subsequent values of st decline monotonically to one.
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In period 0 both countries agree to open their borders and to engage in
trade of newly installed investment goods. Already installed capital and labor
are assumed to remain immobile. Savings and therefore investments flow to
the country with the higher return. The return on the capital is returned
to its owner in the form of consumption goods. Because kB0 < kA0 , hence
f ′(kB0 ) > f ′(kA0 ), all savings accruing in country A will flow as investment to
country B. Thus, as long as kB0 < kA0 , the evolution of the capital intensities
in both countries is given by

kAt+1 =
1− δ
1 + µ

kAt ,

kBt+1 =
1− δ
1 + µ

kBt +
s

1 + µ

[
f(kAt ) + f(kBt )

]
.

From these equations it is clear that the capital intensity in country A declines
monotonically whereas the capital intensity in country B increases monotoni-
cally. Because kBt+1 will approach k∗ in the limit and because kAt+1 < kA0 < k∗,
there exists a time period t∗ where both capital intensities are equal.10 From
this period on, both capital intensities will move in parallel and approach the
common state k∗. This strong convergence implication can only be partially
observed in reality. Some economic obstacles to this convergence hypothesis
are discussed in Lucas (1990).

Besides the physical movements of capital it is interesting to account
for the income dynamics generated. Let k̃Bt denote the capital intensity in
country B owned by agents in country A. This entity evolves according to

k̃Bt+1 =
s

1 + µ

[
f(kAt ) + f ′(kBt )k̃Bt

]
+

1− δ
1 + µ

k̃Bt , t ≤ t∗,

k̃Bt+1 =
s

1 + µ
f ′(kBt )k̃Bt +

1− δ
1 + µ

k̃Bt , t > t∗.

While the evolution of k̃Bt is quite complicated, it is instructive to take a look
at the balance of payment for both countries in the two phases.

4.4 The New Keynesian Model

In this section we study a simple version of the New Keynesian macroeco-
nomic model as it has become popular recently. A detailed description of the

10In this period savings must eventually be split between the two countries to achieve
equality.
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model and its microfoundations can be found in Woodford (2003) and Gaĺı
(2008). Here we follow the exposition by Gaĺı (2011). The model consists of
the following three equations:

yt = yt+1 −
1

σ
(it − πt+1), (IS-equation)

πt = βπt+1 + κyt + ut, (forward-looking Phillips-curve)

it = φπt, (Taylor-rule)

where yt, πt, and it denote income, inflation and the nominal interest rate, all
measured as deviations from the steady state. ut is an exogenous cost-push
shock. Furthermore, we assume that σ > 0, κ > 0, and 0 < β < 1. In
addition, we take an aggressive central bank, i.e. φ > 1.

This system can be solved for (yt+1, πt+1)′ by inserting the Taylor-rule
and Phillips-curve into the IS-equation:

Xt+1 =

(
πt+1

yt+1

)
=

1

β

(
1 −κ

(φβ − 1)/σ β + κ/σ

)(
πt
yt

)
+

(
−ut/β
ut/(σβ)

)
= ΦXt + Zt+1 (4.23)

Denote the characteristic polynomial of Φ by P(λ) and the corresponding
eigenvalues by λ1 and λ2, then we have

P(λ) = (λ− λ1)(λ− λ2) = λ2 − tr(Φ)λ+ det Φ

with

trΦ = λ1 + λ2 = 1 +
1

β
+

κ

σβ
> 2

det Φ = λ1λ2 =
1

β
+
κφ

σβ
> 1

4 = (trΦ)2 − 4 det Φ =

(
1− 1

β

)2

+
κ

σβ

(
κ

σβ
+ 2 +

2

β
− 4φ

)
P(1) = (1− λ1)(1− λ2) =

κ

σβ
(φ− 1) > 0 if φ > 1

where 4 denotes the discriminant of the quadratic equation. Depending on
φ, the roots of P(λ) may be complex. We therefore distinguish two cases.
First assume that φ is high such that4 < 0. In this case we have two complex
conjugate roots. Because det Φ > 1, they are located outside the unit circle.11

11Another way to reach this conclusion is by observing that the real part of the roots is
trΦ
2 > 1.
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Figure 4.7: Logged absolute values of eigenvalues of the New Keynesian
Model

Alternatively assume that φ is small enough such that 4 > 0. In this case
both eigenvalues are real. Using the assumption φ > 1, P(1) > 0. Thus,
both roots are either greater or smaller than one. They cannot be smaller
than one because trΦ > 2. In both cases we therefore reach the conclusion
that the eigenvalues are outside the unit circle. The situation is summarized
in Figure 6.2. If φ is greater than one, the model is determinate and as both
variables are non-predetermined, the boundedness condition (3.27), Qc = 0
which is equivalent to c = 0, then determines the unique solution:

Xt =
∞∑
j=1

Q

(
λ−j1 0

0 λ−j2

)
Q−1

(
ut−1+j/β

−ut−1+j/(σβ)

)

where the columns of Q consist of the eigenvectors corresponding to λ1 and
λ2.

Suppose now that the central bank fixes the path of the interest rate. The
interest rate then becomes an exogenous variable and the system changes to:

Xt+1 =

(
πt+1

yt+1

)
=

1

β

(
1 −κ
−1/σ β + κ/σ

)(
πt
yt

)
+

(
−ut/β

i∗t/σ + ut/(σβ)

)
= Φ̃Xt + Zt+1 (4.24)

where i∗t is the exogenous path of the interest rate. The trace, determinant,
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and discriminant, 4̃ of the characteristic polynomial of Φ̃ become:

trΦ̃ = λ1 + λ2 = 1 +
1

β
+

κ

σβ
> 2

det Φ̃ = λ1λ2 =
1

β
> 1

4̃ = (trΦ)2 − 4 det Φ =

(
1− 1

β

)2

+
κ

σβ

(
κ

σβ
+ 2 +

2

β

)
> 0

P(1) = (1− λ1)(1− λ2) = − κ

σβ
< 0.

The discriminant is now unambiguously positive so that both eigenvalues are
real. Moreover, P(1) < 0 so that one eigenvalue is smaller than one and the
other bigger than one. Thus, the boundedness condition does not determine
a unique solution. Instead there is a continuum of solutions indexed by c1

and we are faced with the case of indeterminacy. The implications of this
indeterminacy for monetary policy and possible remedies are discussed in
Gaĺı (2011).

4.5 The Linear Regulator Problem

Another prototypical case is when the objective function is quadratic and
the law of motion linear. Consider the following general setup know as the
Optimal Linear Regulator Problem:

V (x0) = −
∞∑
t=0

βt (x′tRxt + u′tQut)→ max
ut
, 0 < β < 1 (4.25)

xt+1 = Axt +But, x0 given,

where xt denotes the n-dimensional state vector and ut the k-vector of con-
trols. R is positive semidefinite symmetric n× n matrix and Q is a positive
definite symmetric k× k matrix. A and B are n× n, respectively n× k ma-
trices. Note that the problem has been simplified by allowing no interaction
between xt and ut. Ljungqvist and Sargent (2018, in particular chapter 5)
present many additional theoretical results and economic applications.

One way to solve this optimization problem is to set it up in terms of the
Bellman equation V (x) which is the value of the objective function starting
in state x. Given the additive structure, the value function must satisfy:

V (xt) = max
ut
−{(x′tRxt + u′tQut) + βV (xt+1)} s.t. xt+1 = Axt +But.
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To solve this functional equation, we guess that V (x) = −x′Px for some
positive semidefinite symmetric matrix P . Using this guess and the law of
motion the Bellman equation becomes:

−x′Px = max
u
−{x′Rx+ u′Qu+ β(Ax+Bu)′P (Ax+Bu)}

The first order condition of the maximization problem of the right hand side
is

(Q+ βB′PB)u = −βB′PAx.
Thus, we get the feedback rule:

u = −Fx = −β(Q+ βB′PB)−1B′PAx.

Inserting this rule into the Bellman equation and rearranging terms leads to

P = R + βA′PA− β2A′PB(Q+ βB′PB)−1B′PA.

This equation is known as the algebraic matrix Riccati equation. It can be
solved by iteration:

Pj+1 = R + βA′PjA− β2A′PjB(Q+ βB′PjB)−1B′PjA

starting from P0 = 0. A sufficient condition for the iteration to converge is
that the eigenvalues of A are absolutely strictly smaller than one.

If the optimal rule is inserted into the law of motion, we obtain the closed-
loop solution:

xt+1 = (A−BF )xt

This difference equation is stable if the eigenvalues of A − BF are strictly
smaller than one in absolute value. There is a large literature investigating
the conditions on R,Q,A, and B such a stable closed loop solution obtains.
Basically, two conditions must be met. First, A and B must be such that
the controller can drive down xt to zero starting from any initial condition
x0. Second, the R must be such that the controller wants to drive xt to zero.

As an illustration consider the following simple numerical example with
β = 1, A = 1, B = 1, Q = 1, and R = 1. It is instructive to note that
this specification allows for the possibility that some plans yield a limit to
the infinite sum in (4.25) equal to −∞. Such plans are, however, never
optimal as they are dominated by plans with a finite limit. Given the scalar
specification, the Riccati equation can be solved analytically:12

P = 1 + P − P 2

1 + P
=⇒ P = (1 +

√
5)/2 ≈ 1.618

12It can also be shown that the Riccati difference equation is stable although A = 1 and
β = 1.
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The negative solution can be disregarded because we are looking for positive
solutions. This implies that

u = −Fx = − P

1 + P
x

Inserting this in the law of motion for xt gives the closed-loop solution:

xt+1 =

(
1− P

1 + P

)
xt =

1

1 + P
xt

This solution is stable despite A = 1 and β = 1. Finally, V (x) = P x2 <∞.
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Chapter 5

Linear Stochastic Expectational
Difference Equations

5.1 Introduction and Assumptions

In the following we analyze linear stochastic expectational difference equa-
tions in {Xt} of the form:

Φ1EtXt+1 = Φ0Xt + Zt, t = 0, 1, 2 . . . , (5.1)

where {Xt} and {Zt} are real-valued n-dimensional stochastic processes de-
fined on some probability space (Ω,F ,P). The random variables Xt and
Zt are measurable with respect to the σ-algebra Ft = σ{(Xs, Zs) : s ≤ t}.
This makes the sequence {Ft} a filtration adapted to {Xt} and {Zt}. In eco-
nomics Ft is also called the information set. Et then denotes the conditional
expectation with respect to Ft. As expectations are based on current and
past Xt’s and Zt’s only and not on extraneous variables, we have eliminated
the possibility of sunspot solutions.

Expectational difference equations of the type (5.1) arise typically in the
context of rational expectations models. Starting with the seminal paper by
Blanchard and Kahn (1980), an extensive literature developed which analyzes
the existence and nature of its solutions. The most influential papers, at least
for the present exposition, are Gourieroux et al. (1982), Klein (2000), Sims
(2001), among others. There is no loss of generality involved by confining
the analysis to first order equations as higher order equations can be reduced
to first order ones by inflating the dimension of the process (see Binder and
Peseran, 1994).

In the following, Φ1 is not necessarily invertible. Thus, we allow for the
possibility that some equations do not involve expectational terms. The

127
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stochastic theory developed below is therefore more general than its deter-
ministic counterpart.

To make the problem tangible, we consider only a certain class of so-
lutions. In particular, we require that the exogenous input process {Zt} is
bounded in Lp, p > 1.1 This means that supt ‖Zt‖p < ∞. This assumption
implicitly restricts the solution processes to be bounded as well.

Assumption 5.1. We restrict the class of processes {Zt} to processes bounded
in Lp, p > 1. Thus, supt E‖Zt‖p <∞.

Remark 5.1. The class of stationary processes is the prime example of such
processes as the expected value and the variance remain constant. In many
applications, {Zt} is specified as an ARMA-process.2

Throughout the analysis we follow King and Watson (1998) and assume
that the linear matrix pencil Φ1z + Φ0 is regular:3

Assumption 5.2. The linear matrix pencil Φ1z + Φ0 is regular, i.e. there
exists at least one z ∈ C such that det(Φ1z + Φ0) 6= 0.

Remark 5.2. If the matrix pencil Φ1z + Φ0 would not be regular, there
would exist a polynomial vector P in the forward operator FXt = EtXt+1

such that P (F)Zt = 0 for arbitrary processes {Zt}. However, this cannot be
the case. Note also that the assumption allows either Φ1 or Φ0 or both to
be singular. In that it generalizes the common assumption Φ0 and Φ1 to be
invertible.

As was already pointed out by Blanchard and Kahn (1980), the notion of
a predetermined variable or process is key for understanding the nature of the
solution.4 Following Klein (p.1412, 2000), we adopt the following definition.

Definition 5.1. A stochastic process {Kt} adapted to the filtration {Ft} is
a predetermined process if

1Lp denotes the space of random variables such that ‖X‖p =
(∫
‖X‖pdP

)1/p
< ∞

where inside the integral ‖.‖ is the Euclidian norm in Rn. If p = 2, we obtain the square-
integrable random variables. In this case Lp becomes a Hilbert space.

2ARMA-processes are stationary processes which fulfill a stochastic difference equation
of the form Zt − a1Zt−1 − . . .− apZt−p = Ut + b1Ut−1 + . . .+ bqUt−q, apbq 6= 0, with {Ut}
being white noise.

3See Gantmacher (1959) for an extensive discussion of matrix pencils and the general-
ized eigenvalue problem of finding λ ∈ C such det(Φ1z + Φ0) = 0.

4Sims (2001) provides an alternative approach which does not rely on an a priori division
of the variables into predetermined and non-predetermined ones.
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(i) The process of expectational errors {ηt} with ηt+1 = Kt+1 − EtKt+1 is
an exogenous martingale difference process;

(ii) K0 ∈ F0 is exogenously given.

This definition is more general than the one given in Blanchard and Kahn
(1980) who require that Kt+1 = EtKt+1.

Finally, note that the superposition principle still applies in this context.
Suppose that there exists two solutions {X(1)

t } and {X(2)
t } then {Xt} =

{X(1)
t − X

(2)
t } satisfies the homogeneous stochastic expectational difference

equation
Φ1EtXt+1 = Φ0Xt.

Thus, the general solution of equation (5.1) is

Xt = X
(g)
t +X

(p)
t

where X
(g)
t denotes the general solution to the homogeneous equation and

X
(p)
t a particular solution to the nonhomogeneous equation.

5.2 The univariate case

Before turning to the details of the multivariate case, we will lay out the main
principles by examining a simple univariate example. Consider as a prototype
the Cagan model (Cagan, 1956) which we also analyzed in its deterministic
form in Section 2.3.3. As in equation (2.28), the current logged price level,
here denoted by Xt, is determined by the expectation of its value tomorrow
and some exogenous bounded process {Zt} which is a simple transformation
of money supply:

EtXt+1 = φXt + Zt, φ 6= 0. (5.2)

The superposition principle implies that we can find a solution in two steps.
First, find the general solution to the homogeneous equation

EtXt+1 = φXt. (5.3)

Then, second, find a particular solution to the nonhomogeneous equation.
Note that the equation (5.2) can be rewritten as a first order autoregres-

sive scheme:

Xt+1 = EtXt+1 + (Xt+1 − EtXt+1) = φXt + Zt + ηt+1 (5.4)

where the expectational errors ηt+1 = Xt+1 − EtXt+1 form a martingale
difference sequence.5 Although this process has no serial correlation, it is
not necessarily white noise because its variance may change over time.

5This is the representation preferred by Sims (2001).
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5.2.1 Solution to the homogeneous equation

In order to find the general solution to the homogeneous equation (5.3) note
that {Mt} defined as Mt = φ−tXt is a martingale with respect to {Ft}:

EtMt+1 = Etφ−t−1Xt+1 = φ−t−1EtXt+1 = φ−t−1φXt = Mt.

This suggests that the general solution to the homogeneous equation is of
the form

X
(g)
t = φtMt (5.5)

where {Mt} is any martingale defined with respect to {Ft}. Mt plays the
same role as the constant c in the deterministic case. Given Assumption 5.1,
we consider only solutions which are bounded in Lp, p > 1 i.e. for which
supt ‖X

(g)
t ‖p < ∞. By the Martingale Convergence Theorem (see Hall and

Heyde, 1980), there exists a random variable M ∈ Lp such that Mt =
E(M |Ft) = EtM . Moreover, ‖Mt −M‖p converges to zero for t→∞.

As in the deterministic case, we can distinguish several cases depending
on the value of φ.

|φ| > 1: An implication of the Martingale Convergence Theorem is that E‖Mt‖
converges to E‖M‖ <∞. Thus, for {X(g)

t } to remain bounded Mt must
be equal to zero for all t and hence the general solution of the homo-
geneous equation vanishes.

φ = 1: The general solution is X
(g)
t = Mt which converges to M .

φ = −1: No convergent solution exists.

|φ| < 1: In this case, the representation (5.4) implies that the solution fol-
lows an autoregressive process of order one. This representation admits
a causal representation with respect to the expectational errors. This
representation is given by Xt = φtX0 +

∑t−1
j=0 φ

jηt−j and is bounded.
However, if {Xt} is not predetermined, there is no starting value X0

and we are faced with a situation of indeterminacy because any mar-
tingale difference sequence defined with respect to Ft would satisfy the
difference equation.

5.2.2 Finding a particular solution

A particular solution can be found by iterating the difference equation for-
ward in time and applying the law of iterated expectations. After k iterations
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one obtains:

Xt = φ−1EtXt+1 − φ−1Zt

= φ−1Et
(
φ−1Et+1Xt+2 − φ−1Zt+1

)
− φ−1Zt

= φ−2EtXt+2 − φ−1Zt − φ−2EtZt+1

= . . .

= φ−k−1EtXt+k+1 − φ−1

k∑
j=0

φ−jEtZt+j

As we are looking for solutions which remain bounded, this suggests to take

Xt = −φ−1

∞∑
j=0

φ−jEtZt+j (5.6)

as a particular solution if |φ| > 1. As {Zt} is bounded the expression (5.6)
qualifies as a candidate for the particular solution when |φ| > 1. Note that
{Xt} will be bounded (stationary) for any bounded (stationary) process {Zt}.

If |φ| < 1, the forward iteration may still make sense if Et‖Zt+j‖ goes
to zero quick enough. Take as example the case where {Zt} follows an au-
toregressive process of order one, i.e. Zt = ρZt−1 + ut with ut ∼ WN(0, σ2)
and |ρ| < 1. This specification implies that EtZt+j = ρjZt. Thus, as long as
|φ−1ρ| < 1, the forward solution will exist and will be bounded (stationary).
However, this will not be true for every |ρ| < 1.

In general, if |φ| < 1, we may consider the equivalent representation (5.4)
instead. Iterating this equation backward, we obtain:

Xt = φtX0 +
t−1∑
j=0

φj(Zt−j + ηt−j).

This solution, however, makes only sense when {Xt} is predetermined so that
X0 is given.

5.2.3 Example: Cagan’s model of hyperinflation

Let us illustrate our findings by taking up again Cagan’s model of hyperin-
flation with rational expectations (see section 2.3). This model leads to the
following difference equation in the logged price level {pt}:

Etpt+1 =
α− 1

α
pt +

mt

α
, α < 0, (5.7)
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where {mt} is now a stochastic process and where the expected price level is
replaced by the conditional expectation of the logged price level.

Given that α < 0, the coefficient of pt, φ = (α − 1)/α, is positive and
strictly greater than one. Therefore the only bounded (stationary) solution

to the homogeneous equation is {X(g)
t } = 0 and a particular solution can be

found by forward iteration. Thus the solution is:

pt =
1

1− α

∞∑
j=0

(
α

α− 1

)j
Etmt+j. (5.8)

Suppose that the money supply follows an autoregressive process of order
one:

mt = amt−1 + εt, |a| < 1 and εt ∼ IID(0, σ2).

The conditional expectation Etmt+j then equals ajmt. Inserting this into
equation (5.8) leads to

pt =
1

1− α

∞∑
j=0

(
α

α− 1

)j
ajmt =

1

1− α(1− a)
mt.

This shows that the relation between the price level and money supply de-
pends on the conduct of monetary policy, i.e. it depends on the autoregressive
coefficient a. Thus whenever the monetary authority changes its rule, it af-
fects the relation between pt and mt. This cross-equation restriction is viewed
by Hansen and Sargent (1980) to be the hallmark of rational expectations.
It also illustrates that a simple regression of pt on mt can not be considered a
structural equation, i.e. cannot uncover the true structural coefficients (α in
our case), and is therefore subject to the so-called Lucas-critique (see Lucas
(1976)).

A similar conclusion is reached if money supply follows a moving average
process of order one instead of an autoregressive process of order one:

mt = εt + θεt−1, |θ| < 1 and εt ∼WN(0, σ2).

As |θ| < 1, the process for mt is invertible and we can express εt as

εt = mt − θmt−1 + θ2mt−2 − . . .

This then leads to the following conclusions:

mt+1 = εt+1 + θεt = εt+1 + θ(mt − θmt−1 + θ2mt−2 − . . .)
Etmt+1 = θ(mt − θmt−1 + θ2mt−2 − . . .)
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and

Etmt+2 = Etεt+2 + θEtεt+1 = 0.

The particular solution then becomes

pt =
1

1− α
mt +

αθ

(α− 1)(1− α)
(mt − θmt−1 + θ2mt−2 − . . .)

=

(
1 +

αθ

α− 1

)
mt

1− α
+

αθ2

(1− α)2
mt−1 −

αθ3

(1− α)2
mt−2 + . . .

Adding the corresponding expression for θpt−1 finally gives:

pt + θpt−1 =

(
1 +

αθ

α− 1

)
mt

1− α
+ θ

mt−1

1− α
This shows that {pt} follows an autoregressive moving average process of
order (1, 1), i.e. an ARMA(1,1) process, with respect to {mt}. The same
remarks as before also apply in this case. Note that the AR-polynomial of
pt and the MA-polynomial of mt coincide. This remains true for general
ARMA-specifications for {mt} (Gourieroux et al., 1982).

5.3 The multivariate case

Following the bulk of the literature, we try to decouple the system into a non-
explosive (bounded) and an explosive (unbounded) part. Suppose that there

are nk predetermined variables assembled in {X(k)
t } then we can partition

the vector Xt as

Xt =

(
X

(k)
t

X
(d)
t

)
.

The analysis proceeds by first examining the case where Φ1 is invertible.
This is the specification investigated initially by Blanchard and Kahn (1980).

Φ1 invertible

The invertibility of Φ1 implies that we can rewrite equation (5.1) as

EtXt+1 = ΦXt + Z̃t, t = 0, 1, 2 . . .

where Φ = Φ−1
1 Φ0 and Z̃t = Φ−1

1 Zt. Let us further assume that Φ is diagonal-
izable with Φ = QΛQ−1, Λ diagonal. As in the discussion of the deterministic
case in Section 3.4, we partition Λ as

Λ =

(
Λ1 0
0 Λ2

)
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such that the eigenvalues in Λ1 are strictly inside the unit circle whereas those
in Λ2 are strictly outside the unit circle. We disregard the case of eigenvalues
on the unit circle.

We make the following assumption with respect to the dimension of Λ1

and Λ2.

Assumption 5.3. The dimension of Λ1 is nk. Thus, there are exactly as
many eigenvalues inside the unit circle as there are predetermined variables.
Hence, there are as many non-predetermined variables as there are eigenval-
ues outside the unit circle. This implies that X

(k)
t = X

(1)
t and X

(d)
t = X

(2)
t .

We will discuss later what happens if this condition is violated. Parti-
tioning Q and Xt accordingly leads to(

EtX(1)
t+1

EtX(2)
t+1

)
=

(
Q11 Q12

Q21 Q22

)(
Λ1 0
0 Λ2

)(
Q(11) Q(12)

Q(21) Q(22)

)(
X

(1)
t

X
(2)
t

)
+

(
Z̃

(1)
t

Z̃
(2)
t

)

where Q−1 =

(
Q(11) Q(12)

Q(21) Q(22)

)
. Multiplying this equation from the left by Q−1

leads to the decoupled system(
EtY (1)

t+1

EtY (2)
t+1

)
=

(
Λ1 0
0 Λ2

)(
Y

(1)
t

Y
(1)
t

)
+

(
Z̄

(1)
t

Z̄
(2)
t

)

where Q−1Xt = Yt and Q−1Z̃t = Z̄t, i.e.

Y
(1)
t = Q(11)X

(1)
t +Q(12)X

(2)
t

Y
(2)
t = Q(21)X

(1)
t +Q(22)X

(2)
t

Z̄
(1)
t = Q(11)Z̃

(1)
t +Q(12)Z̃

(2)
t

Z̄
(2)
t = Q(21)Z̃

(1)
t +Q(22)Z̃

(2)
t .

Following the logic of the discussion in Section 5.2, the unique bounded
solution for {Y (2)

t } is

Y
(2)
t = −Λ−1

2

∞∑
j=0

Λ−j2 EtZ̄(2)
t+j = −Λ−1

2

∞∑
j=0

Λ−j2 Et
(
Q(21)Z̃

(1)
t+j +Q(22)Z̃

(2)
t+j

)
= −Λ−1

2

∞∑
j=0

Λ−j2

(
Q(21) Q(22)

)
EtZ̃t+j. (5.9)
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Turn next to the first part of the decoupled equation. Note that the
predetermined variable X

(1)
t satisfies the identity:

X
(1)
t+1 − EtX(1)

t+1 = Q11

(
Y

(1)
t+1 − EtY (1)

t+1

)
+Q12

(
Y

(2)
t+1 − EtY (2)

t+1

)
= ηt+1.

Inserting this equation into the equation for Y
(1)
t+1, we get

Y
(1)
t+1 = EtY (1)

t+1 +
(
Y

(1)
t+1 − EtY (1)

t+1

)
= Λ1Y

(1)
t + Z̄t

(1) +Q−1
11 ηt+1 −Q−1

11 Q12

(
Y

(2)
t+1 − EtY (2)

t+1

)
= Λ1Y

(1)
t + Z̄t

(1) +Q−1
11 ηt+1 −Q−1

11 Q12εt+1 (5.10)

where εt+1 = Y
(2)
t+1 − EtY (2)

t+1 is an exogenous martingale difference process.
Thus, equation (5.10) is a first order autoregressive scheme with starting
value given by

Y
(1)

0 = Q−1
11

(
X

(k)
0 −Q12Y

(2)
0

)
.

Equations (5.10) and (5.9) determine the solution for Yt. This step in the
derivation is only valid if Q11 is invertible. Otherwise, we could not determine
the initial values of Y

(1)
t from those of X

(1)
t and there would be a lack of initial

values for Yt.
6 Hence, Assumption 5.3 is not sufficient for the uniqueness of

the solution. In addition, we need the following assumption.

Assumption 5.4. Q11 is nonsingular.

Finally, the solution for Yt can be turned back into a solution for Xt by
multiplying Yt by Q.

We can get further insights into the nature of the solution by assuming
that {Z̃t} is a causal autoregressive process of order one:

Z̃t+1 = AZ̃t + ut+1, ut ∼WN(0, σ2) and ‖A‖ < 1

where {ut} is exogenous. This specification implies that EtZ̃t+j = AjZ̃t,
j = 1, 2, . . . Inserting this into equation (5.9) we find that

Y
(2)
t = −Λ−1

2

∞∑
j=0

Λ−j2

(
Q(21) Q(22)

)
AjZ̃t = MZ̃t

where M = −Λ−1
2

∑∞
j=0 Λ−j2

(
Q(21) Q(22)

)
Aj. The solution to Y

(1)
t then can

be written as

Y
(1)
t+1 = Λ1Y

(1)
t + Z̄t

(1) +Q−1
11 ηt+1 −Q−1

11 Q12Mut+1.

6See Klein (2000, section 5.3.1) and King and Watson (2002) for details and examples.
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Finally, the initial condition can be computed as

Y
(1)

0 = Q−1
11

(
X

(k)
0 −Q12MZ̃0

)
.

Before turning to the general case several remarks are in order.

Remark 5.3. The above derivation remains valid even if the matrix Φ is not
diagonalizable. In this case, we will have to work with the Jordan canonical
form instead (see Section 3.2.2).

Remark 5.4. The derivation excluded the possibility of roots on the unit
circle.

Φ1 singular

In many practical applications, Φ1 is not invertible so that the procedure just
outlined is not immediately applicable. This, for example, is the case when
a particular equation contains no expectations at all which translates into a
corresponding row of zeros in Φ1. One way to deal with this problem is to
take a generalized inverse of Φ1 and proceed as explained above.

The most appropriate type of generalized inverse in the context of dif-
ference equations is the Drazin-inverse (see Campbell and Meyer, 1979, for
a comprehensive exposition). This generalized inverse can be obtained for
any n × n matrix A in the following manner. Denote by IndA the smallest
nonnegative integer k such that rankAk = rankAk+1. This number is called
the index of A. Then the following Theorem holds (see Theorem 7.2.1 in
Campbell and Meyer, 1979).

Theorem 5.1. Let A be an n × n matrix with Ind(A) = k > 0, then there
exists a nonsingular matrix P such that

A = P

(
C 0
0 N

)
P−1

where C is nonsingular and N is nilpotent of index k (i.e. Nk = 0). The
Drazin-inverse AD is then given by

AD = P

(
C−1 0

0 0

)
P−1.

With this Theorem in mind, we can now decouple the system in two
parts. The first part will be similar to the case when Φ1 is invertible. The
second one will correspond to the singular part and will in some sense solve
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out the expectations. Multiply for this purpose equation (5.1) from the left
by (zΦ1 + Φ0)−1 where assumption 5.2 guarantees that the inverse exists for
some number z. Thus, we get

(zΦ1 + Φ0)−1Φ1EtXt+1 = (zΦ1 + Φ0)−1Φ0Xt

Φ̂1EtXt+1 = (zΦ1 + Φ0)−1(zΦ1 + Φ0 − zΦ1)Xt

Φ̂1EtXt+1 = (In − zΦ̂1)Xt

where Φ̂1 = (zΦ1 + Φ0)−1Φ1. The application of Theorem 5.1 to Φ̂1 then
leads to the decoupled system(

C 0
0 N

)
EtX̃t+1 =

(
In − z

(
C 0
0 N

))
X̃t

where X̃t denotes P−1Xt. This leads to the following two equations:

CEtX̃(1)
t+1 = (In1 − zC)X̃

(1)
t

NEtX̃(2)
t+1 = (In2 − zN)X̃

(2)
t

where X̃t has been partitioned appropriately. As C is invertible, the first
difference equation can be treated as outlined above. By shifting the time
index, the second equation can be written as

NEtX̃(2)
t+k = (In2 − zN)X̃

(2)
t+k−1.

Applying the law of iterated expectations and multiplying the equation from
the left by Nk−1 gives

0 = NkEtX̃(2)
t+k = (In2 − zN)2Nk−2EtX̃(2)

t+k−2

= (In2 − zN)3Nk−3EtX̃(2)
t+k−3

= . . .

= (In2 − zN)kEtX̃(2)
t

= (In2 − zN)kX̃
(2)
t .

Because (In2 − zN)k is invertible, the only solution to the above equation is

X̃
(2)
t = 0.
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Chapter 6

Systems with Time–Varying
Coefficients

Up to now we have assumed that the coefficients of the homogeneous part
(the coefficients in Φ) are constant. This presupposition, although conve-
nient and appropriate in many instances, is a very tenuous position. Indeed,
there are several convincing reasons to believe in time-varying coefficients
instead. First, time-varying coefficient models arise naturally from the lin-
earization of nonlinear models along solution paths as shown in the next
section (see also Elaydi, 2005, p.219–220). Second, the relationships describ-
ing the economy undergo structural changes giving rise to drifting coefficients
as emphasized by Lucas’ critique (Lucas, 1976). Sargent (1999), for example,
provides an interpretation in terms of self-confirming equilibria and learning.
Third, policies and policy rules are subject to change. Cogley and Sargent
(2005), Primiceri (2005), or Chen et al. (2015) provide empirical evidence
with to U.S. monetary policy.

While the widening in scope is a deserving undertaking, it requires the
introduction of new concepts which also increase the mathematical level of
analysis. As the standard eigenvalue/eigenvector analysis exposed previ-
ously does not deliver purposeful results, we must introduce Lyapunov ex-
ponents, respectively Lyapunov spaces, as alternatives. As it turns out the
Lyapunov exponents and Lyapunov spaces provide just the right tools and
can be considered as perfect substitutes for the eigenvalues and eigenspaces.
The exposition heavily relies on the monographs Argyris et al. (2015), Arnold
(2003), Colonius and Kliemann (2014), and Viana (2014). We start the
presentation by motivating these concepts and applying them to the con-
stant coefficient case. Thereby the relation between eigenvalues/eigenspaces
and Lyapunov exponents / Lyapunov spaces is established. We will then
consider periodically moving coefficients which will show the limits of the

139
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eigenvalues/eigenspaces analysis. We then turn to the case of deterministi-
cally time-varying coefficients. Finally, we will allow the coefficients to vary
stochastically.

6.1 Lyapunov Exponents and Lyapunov Spaces

Let f : R→ R be continuously differentiable transformation. This transfor-
mation gives rise to a homogeneous difference equation:

xt+1 = f(xt).

Given a starting value x in period 0, this difference equation generates a
solution (orbit) xt = ϕ(t, x) = f t(x) which we take as a reference. Consider a
new solution x̄t = ϕ(t, x+∆x) obtained from perturbing the initial condition
by a small change ∆x. Hence, we have x̄t+1 = xt+1 + ∆xt+1 = f(xt + ∆xt).
Taking a first order Taylor expansion (linearization) around xt, we get

x̄t+1 = f(xt) + f ′(xt)∆xt = xt+1 + f ′(xt)∆xt.

Hence, for the perturbation we get

∆xt+1 = f ′(xt)∆xt. (6.1)

This has the form of a first order homogenous linear difference equation.
However, its coefficient f ′(xt) depends on t and is not constant over time.
Iterating this equation t+ 1-times,

∆xt+1 = f ′(xt)f
′(xt−1) . . . f ′(x0)∆x

=
t∏

τ=0

f ′(xτ )∆x

where we have identified ∆x with ∆x0. The Lyapunov exponent λ is then
defined as the mean exponential divergence or converge of neighbouring so-
lutions |∆xt| ≈ etλ|∆x| for t → ∞ and |∆x| → 0. Hence, the Lyapunov
exponent for univariate difference equations is obtained as

λ(x) = lim
t→∞

lim
|∆x|→0

1

t
log

∆xt
∆x

= lim
t→∞

1

t

t−1∑
τ=0

log |f ′(xτ )|.

The dependence on x arises because we are considering perturbations from
a solution starting in x. Thus, we allow for the possibility that solution with



6.1. LYAPUNOV EXPONENTS AND LYAPUNOV SPACES 141

x  = x+x0

x  = f(x )1 0

x  = f(x )2 1

reference
solution

x  =t,xt

perturbed
solution

x  =t,xxt

x  = x0

x  = x  + x1 1 1

= f(x ) 0

x  = x  + x2 2 2

= f(x ) 1

x  = x0

x1

x2

Figure 6.1: Definition of Lyapunov Exponents

different starting values will have different Lyapunov exponents. In order to
ensure the existence of such a number, the limit is replaced by a limes supe-
rior. A special reference solution is given by a solution starting in a steady
state. Hence, the Lyapunov exponent provides information about the sta-
bility of a steady state. In particular, if the Lyapunov exponent is negative,
the influence of the transient dynamics is eliminated and the perturbation
of the initial value vanishes in the long run. Figure 6.1 gives an intuitive
interpretation of the Lyapunov exponent.

The definition of Lyapunov exponents can be extended to multivariate
transformations in a straightforward manner. If the system is generated by a
continuously differentiable transformation f : Rd → Rd, the first order linear
homogenous difference equation corresponding to equation (6.1) is given by

∆xt+1 = Df(xt)∆xt

where Df(xt) denotes the Jacobian matrix of f evaluated at xt. Differenti-
ating xt = f t(x) by applying the chain rule leads to

∆xt = Df t(x)∆x = Df(f t−1(xt−1)) . . .D(f(f(x))Df(x)︸ ︷︷ ︸
t-fold product of time-varying matrices

∆x

where Df t(x) gives rise to a t-fold matrix product of time-varying matri-
ces. This demonstrates how time-varying coefficient matrices arise naturally
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through linearization. As in the univariate case, we define the Lyapunov
exponent λ(x) as

λ(x) = lim sup
t→∞

1

t
log
‖∆xt‖
‖∆x‖

= lim sup
t→∞

1

t
log ‖ϕ(t, x)‖

where ϕ(t, x) = Df(f t−1(xt−1)) . . .D(f(f(x))Df(x)x. Because the state
space is finite dimensional, this definition is independent of the norm.

Lemma 6.1. The Lyapunov exponent is independent of the norm actually
chosen.

Proof. Because the state space is finite dimensional, all norms are equivalent.
Let ‖.‖a and ‖.‖b two norms on X = Rd. Then there exists positive constants
c1 and c2 such that

1

t
log(c1‖ϕ(t, x)‖b) ≤

1

t
log(‖ϕ(t, x)‖a) ≤

1

t
log(c2‖ϕ(t, x)‖b)

or equivalently

1

t
(log c1 + log ‖ϕ(t, x)‖b) ≤

1

t
log(‖ϕ(t, x)‖a) ≤

1

t
(log c2 + log ‖ϕ(t, x)‖b).

Taking the limit for t→∞,

lim sup
1

t
log ‖ϕ(t, x)‖b ≤ lim sup

1

t
log(‖ϕ(t, x)‖a) ≤ lim sup

1

t
log ‖ϕ(t, x)‖b.

Hence, the Lyapunov exponents with respect to the two norms are equal.

From this definition we immediately deduce the following two character-
ising properties.1

Proposition 6.1 (Properties of Lyapunov Exponents). The Lyapunov ex-
ponents satisfy:

(i) For any real number c 6= 0, λ(cx) = λ(x).

(ii) For any two vectors x and y, λ(x+ y) ≤ max{λ(x), λ(y)}.

Proof. The definition of the Lyapunov exponent implies:

λ(cx) = lim sup
t→∞

1

t
log ‖ϕ(t, cx)‖ = lim sup

t→∞

1

t
(log |c|+ log ‖ϕ(t, x)‖) = λ(x).

1See Arnold (2003, section 3.2.1) and the literature cited there for more details.
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This establishes the first characteristic. Assume that max{λ(x), λ(y)} =
λ(x), then there exists a time τ such that for all t > τ ,

1

t
log(‖x+ y‖) ≤ 1

t
log(‖x‖+ ‖y‖) =

1

t
log ‖x‖+

1

t
log

(
1 +
‖y‖
‖x‖

)
.

This establishes the second characteristic as t goes to ∞.

The two characteristics imply that the sets Vc = {x | λ(x) ≤ c}, c ∈ R,
are linear subspaces of Rd. Indeed, for all x, y ∈ Vc and α ∈ R, x + y ∈ Vc

and αx ∈ Vc. Hence, Vc is closed under vector addition and multiplication
by a scalar. To determine the number of different Lyapunov exponents, we
establish the lemma.

Lemma 6.2. Vectors with different Lyapunov exponents are linearly inde-
pendent.

Proof. Take two vectors x, y ∈ Rd \ 0 with λ(x) 6= λ(y) and suppose that
they are linearly dependent. Thus, there exists α, β ∈ R, not equal to zero,
such that αx + βy = 0. Hence, y = −(α/β)x. The first characteristic of
Lyapunov exponents then implies x and y must have the same Lyapunov
exponent. This a contradiction, hence x and y are linearly independent.

Because there can be at most d linearly independent vectors in Rd, the
maximal number of Lyapunov exponents is d. Suppose that there are 1 ≤
` ≤ d different Lyapunov exponents and order them as

λ1 > · · · > λ`.

Then define the ` linear subspaces Vi = {x | λ(x) ≤ λi}, i = 1, . . . , `. They
form a flag of subspaces (filtration) of Rd:

{0} ⊂ V` ⊂ . . . ⊂ V1 = Rd

where the inclusions are proper. Moreover,

λ(x) = λi ⇐⇒ x ∈ Vi \Vi+1, i = 1, . . . , `,

where V`+1 is identified with {0}.
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6.2 Fundamental Matrix and Green’s Matrix

The following sections deal with the case where f is an affine transformation:

xt+1 = Atxt + bt, t ∈ Z,

where the matrices At ∈ GL(d) are allowed to vary either deterministically
or randomly. In order to analyze such systems it is useful to define the matrix
product Φ(t):

Φ(t) =


At−1 . . . A1A0, t = 1, 2, . . .;
Id, t = 0;
A−1
t . . . A−1

−1, t = −1,−2, . . .
(6.2)

Because Φ(t) satisfies the matrix linear difference equation Φ(t+1) = AtΦ(t),
Φ(t) is a fundamental matrix for the linear time-varying system xt+1 = Atxt.
It is even a principal fundamental matrix because Φ(0) = Id.

2 More generally,
define for any fundamental matrix Φ(t) the matrix

Φ(t, s) = Φ(t)Φ−1(s), t, s ∈ Z.

The properties of Φ(t, s) are summarized in the following lemma.

Lemma 6.3. For all s, t ∈ Z

(i) Φ(t+ 1, s) = AtΦ(t, s). Hence, Φ(t, s) is a solution of the matrix differ-
ence equation, therefore a fundamental matrix;

(ii) Φ(t, 0) is a principal fundamental matrix;

(iii) Φ−1(t, s) = Φ(s, t);

(iv)

Φ(t, s) =


∏t−s

j=1 At−j = At−1At−2 . . . As, t > s;

Id, t = s;∏s−1
j=t Aj = A−1

t A−1
t+1 . . . A

−1
s−1, t < s.

In accordance with Section 3.2.1, when At is constant and equal to A,
Φ(t, s) = At−s.

As in Section 3.2.1, Green’s matrix is defined as

Γ(t, s) = Φ(t, r)Φ−1(s, r), r, s, t ∈ Z.
2The concept of a fundamental matrix was already introduced in Section 3.2.1 for the

constant coefficient case. With time-varying coefficients the concept is becoming more
relevant.
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Lemma 6.4. For all r, s, t ∈ Z Green’s matrix satisfies:

(i) Γ(t, t) = Id.

(ii) Γ−1(t, s) = Γ(s, t);

(iii) Γ(t+ 1, s) = AtΓ(t, s) and Γ(t, s+ 1) = Γ(t, s)A−1
t ;

(iv) Γ(t, s) = Γ(t, r)Γ(r, s);

(v)

Γ(t, s) =


∏t−s

j=1At−j = At−1At−2 . . . As, t > s;

Id, t = s;∏s−1
j=t Aj = A−1

t A−1
t+1 . . . A

−1
s−1, t < s.

In accordance with Section 3.2.1, when At is constant and equal to A,
Γ(t, s) = At−s.

6.3 Constant Coefficients

In order to familiarize with the notion of Lyapunov exponents, we revisit the
case of linear constant coefficient first order difference equations generated
by f(x) = Ax:

xt+1 = Axt, A ∈ GL(d). (6.3)

For this system x∗ = 0 is a steady state and solutions are given by xt =
ϕ(t, x) = Atx. Taking the zero solution as the reference solution, the Lya-
punov exponent is

λ(x) = lim sup
1

t
log ‖ϕ(t, x)‖ = lim sup

1

t
log ‖Atx‖.

Before establishing the relationship between Lyapunov exponents and eigen-
values, we analyze how a similarity transformation of A affects the Lyapunov
exponents.

Lemma 6.5. Let A,B ∈ GL(d) be related by a similarity transformation,
i.e. there exists Q ∈ GL(d) such that B = Q−1AQ. Then the Lyapunov
exponents of the solution ϕA(t, x) of xt+1 = Ax and ϕB(t, x) of xt+1 = Bx
are related by

λB(x) = λA(Qx).
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Proof. Note that

ϕA(t, Qx) = AtQx = QQ−1AtQx = QBtx = QϕB(t, x).

Hence, ϕB(t, x) = Q−1ϕA(t, Qx). Using this relation, we find

λB(x) = lim sup
t→∞

1

t
log ‖ϕB(t, x)‖ = lim sup

t→∞

1

t
log ‖Q−1ϕA(t, Qx)‖

≤ lim sup
t→∞

1

t
log ‖Q−1‖+ lim sup

t→∞

1

t
log ‖ϕA(t, Qx)‖ = λA(Qx).

Similarly,

λA(Qx) = lim sup
t→∞

1

t
log ‖ϕA(t, Qx)‖ = lim sup

t→∞

1

t
log ‖QQ−1ϕA(t, Qx)‖

≤ lim sup
t→∞

1

t
log ‖Q‖+ lim sup

t→∞

1

t
log ‖Q−1ϕA(t, Qx)‖ = λB(x).

Combining the two inequalities leads the assertion.

We are now in a position to state the main theorem of this section.

Theorem 6.1 (Lyapunov Exponents and Eigenvalues). Consider the linear
difference equation (6.3). Then the state space X = Rd can be decomposed
into subspace Li, i = 1, . . . , ` ≤ d, called Lyapunov spaces, such that

Rd = L1 ⊕ . . .⊕ L`.

The corresponding Lyapunov exponents λ(x), x ∈ Rd, are given as the loga-
rithms λi of the moduli of the eigenvalues of A. For a solution ϕ(t, x), x 6= 0,
one has

λ(x) = lim
t→±∞

1

t
log ‖ϕ(t, x)‖ = λi if and only if x ∈ Li.

Proof. Colonius and Kliemann (2014, section 1.5)

Several remarks are in order.

Remark 6.1. (i) The limes superior is actually a normal limit.

(ii) As A ∈ GL(d), A is invertible. Hence, zero is not an eigenvalue. There-
fore all Lyapunov exponets are finite, i.e. λ` > −∞.

(iii) It is important to take the two-sided limit, t→∞ and t→ −∞. Any
starting value x = x1 + x2 with xi ∈ Li, λ1 > λ2, and x1 6= 0, has
Lyapunov exponent λ(x) = λ1.
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(iv) For the univariate case xt+1 = axt he have

λ(x) = lim
t→±∞

1

t
log |atx| = lim

t→±∞

1

t
log(|a|t) + lim

t→±∞

1

t
log |x| = log |a|.

(v) We may define a time-reversed difference equation as follows. Define
yt = x−t. Then, yt+1 = x−t−1 = A−1x−t = A−1yt for all t ∈ Z. Thus,
xt+1 = A−1xt, t ∈ Z, defines the time-reversed equation. Because
the eigenvalues of A−1 are by the inverses of the eigenvalues of A, the
Lyapunov exponents of the time-reversed equation are −λi, but the
Lyapunov spaces coincide.

Theorem 6.1 has immediate consequences for characterizing the stability
of the zero fixed point of the linear system 6.3. For this purpose it is useful
to make the following definitions.

Definition 6.1 (Stable, Center, Unstable Subspaces). The stable, center,
and unstable subspaces associated with A ∈ GL(d), respectively with the
linear difference equation (6.3), are defined as

Ls =
⊕
λj<0

Lj, ,L0, ,Lu =
⊕
λj>0

Lj

where L0 is the Lyapunov space corresponding to Lyapunov exponents equal
to zero.

This definitions give rise to the following theorem.

Theorem 6.2. The zero fixed point of system (6.3) is asymptotically stable,
hence exponentially stable, if and only if all Lyapunov exponents are negative,
or equivalently if Ls = Rd. Moreover, the zero fixed point is stable if and only
all Lyapunov exponents are nonpositive and the eigenvalues with modulus
equal to one are semisimple.

Proof. This an immediate consequence of Theorem 1.3.

Thus, we see that Lyapunov exponents do characterize asymptotic (ex-
ponential) stability, but not necessarily stability.

The solution of the affine difference equation xt+1 = Axt+bt is then found
as shown in Section (3.4).
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6.4 Periodically Time-Varying Coefficients

In this Section we broaden the analysis and consider difference equations of
the following type:

xt+1 = ψt(xt), t ∈ Z,

where ψt : Rd → Rd is an affine map which varies deterministically with
time. This time variation takes place independent from the state of the
system. More specifically,

ψt(xt) = Atxt + bt, t ∈ Z and At ∈ GL(d). (6.4)

The reader can convince himself that the superposition principle also holds in
this case. We therefore start with the analysis of the linear nonautonomous
case

xt+1 = Atxt. (6.5)

with periodically varying coefficients. In particular,

At+p = At, t ∈ Z, for some p ∈ N.

Denote by ϕ(t, ν, x) the solution of xt+1 = Atxt with initial condition x and
At = Aθ(t+ν), ν = 0, 1, . . . , p − 1, where θ(t + ν) = t + ν mod p. 3 In the
case p = 2, ϕ(t, 0, x) becomes x1 = A0x, x2 = A1A0x, x3 = A0A1A0x,
x4 = A1A0A1A0x, . . . , and ϕ(t, 1, x) is given by x1 = A1x, x2 = A0A1x,
x3 = A1A0A1x, x4 = A0A1A0A1x, . . .

The theory of this type of difference equations is known as the Floquet
theory. Excellent expositions can be found in Elaydi (2005, section 3,4) and
Colonius and Kliemann (2014, section 7.1), among others. In the following,
I will borrow freely from these expositions.

An immediate observation is that the nonautonomous equation (6.5) can
be reduced to an autonomous one by taking p steps at once. For any solution
{xt} define yτ = xτp, τ ∈ Z. Then,

xτp+1 = Aτpxτp = A0yτ ,

xτp+2 = Aτp+1xτp+1 = A1A0xτp = A1A0yτ ,

...

xτp+p =

(
p∏
j=1

Ap−j

)
xτp =

(
p∏
j=1

Ap−j

)
yτ .

3If t ∈ Z then t mod p denotes the unique integer r, 0 ≤ r < p, such that t = τp + r
for some integer τ ∈ Z.
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This shows that {yτ} is a solution to the autonomous difference equation

yτ+1 =

(
p∏
j=1

Ap−j

)
yτ = Φ(p)yτ

with Φ(p) given by equation (6.2). Given a solution {yτ} determines a so-
lution of equation (6.5) via the scheme from above: xτp+1 = Aτpxτp = A0yτ
and so on.

As shown in Section 6.2, Φ(t) is a principal fundamental matrix. In
addition, due to the periodicity of {At}, Φ(t) satisfies the relationship

Φ(t+ τp) = Φ(t)Φ(τp) = Φ(t)Φ(p)τ .

The periodicity of {At} also translates into the periodicity of the fundamental
matrix Φ(t, s) and Green’s matrix Γ(t, s):

Φ(t+ τp, s+ τp) = (Φ(t)Φ(p)τ ) (Φ(s)Φ(p)τ )−1 = Φ(t, s)

Γ(t+ τp, s+ τp) =
(
Φ(t)Φ(p)τΦ−1(r)

) (
Φ(s)Φ(p)τΦ−1(r)

)−1
= Γ(t, s)

The asymptotic behavior of yt and hence of xt, thus depends on the
eigenvalues αj, j = 1, . . . , p, of Φ(p), known as the Floquet multipliers. The
Floquet exponents are defined as

λj =
1

p
log |αj|.

It turns out that they play a crucial in understanding the asymptotic behavior
of solutions of equation (6.5) and the stability of the zero solution. It is
important to realize that the eigenvalues of the “time frozen” or “local”
matrices At present no information with regard to the asymptotic behavior
as the analysis and examples in Section 6.5.1 demonstrate.

The Lyapunov exponent of ϕ(t, ν, x) is defined as before by

λ(x, ν) = lim sup
t→∞

1

t
log ‖ϕ(t, ν, x)‖ for (x, ν) ∈ Rd × {0, 1, . . . , p− 1}.

In general the Lyapunov exponent may depend on ν. Given these preliminar-
ies we can quote the following Theorem from Colonius and Kliemann (2014,
theorem 7.1.7).

Theorem 6.3 (Floquet theory). Consider the p-period linear difference equa-
tion (6.5). The Lyapunov exponents coincide with the Floquet exponents λj,
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j = 1, . . . , ` ≤ d, and they exist as a limit. For each ν ∈ {0, 1, . . . , p − 1}
there exists a decomposition

Rd = L(λ1, ν)⊕ · · · ⊕ L(λ`, ν)

into linear subspaces L(λj, ν) called the Floquet or Lyapunov spaces. These
subspaces have the following properties:

(i) The Lyapunov spaces have dimensions independent of ν,

dj = dimL(λj, ν) is constant for ν ∈ {0, 1, . . . , p− 1};

(ii) they are invariant under multiplication by the principal fundamental
matrix in the following sense:

Φ(t+ν, ν)L(λj, ν) = L(λj, θ(t, ν)) for all t ∈ Z and ν ∈ {0, 1, . . . , p−1}

where Φ(t+ ν, ν) is defined as Φ(t+ ν)Φ−1(ν);

(iii) for every ν ∈ {0, 1, . . . , p− 1}, the Lyapunov exponent satisfy

λ(x, ν) = lim
t→±∞

1

t
log ‖ϕ(t, ν, x)‖ = λj

if and only if x ∈ L(λj, ν) and x 6= 0.

Remark 6.2. The invariance property (ii) is known as equivariance. Note
also that the Lyapunov spaces have periodicity p.

As in the constant coefficient case the Lyapunov subspaces can be col-
lected into subbundles

Ls(ν) =
⊕
λj<0

L(λj, ν), Lc(ν) = L(0, ν), and Lu(ν) =
⊕
λj>0

L(λj, ν)

called the stable subbundle, the center, and the unstable subbundle, respec-
tively. Thus, the zero solution is asymptotically stable if and only if all
Lyapunov exponents are negative. This is equivalent to Ls(ν) = Rd for some
(hence for all) ν ∈ {0, 1, . . . , p − 1}. The difference equation (6.5) is called
hyperbolic if Lc(ν) = ∅ or, equivalently, if all Lyapunov exponent are different
from zero. For a hyperbolic difference equation the zero solution is called a
saddle point if both Ls(ν) and Lu(ν) have dimensions ds = dimLs(ν), respec-
tively du = dimLu(ν), strictly greater than zero. From now on we assume
the that the difference equation is hyperbolic.
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Denote by B(ν) the matrix formed as the union of bases vectors Ls(ν)
and Lu(ν). The assumption of hyperbolicity implies Rd = Ls(ν)⊕ Lu(ν) so
that B(ν) is nonsingular. B(ν) and B(ν)−1 can be partitioned as

B(ν) =

(
B11(ν) B12(ν)
B21(ν) B22(ν)

)
and B−1(ν) =

(
B11(ν) B12(ν)
B21(ν) B22(ν)

)
such that B11(ν) and B11(ν) are invertible ds × ds matrices, and B22(ν) and
B22(ν) are invertible du × du matrices. The projector πs(ν) : Rd → Ls(ν)
onto Ls(ν) along Lu(ν) is then

πs(ν) = B(ν)

(
Ids 0
0 0

)
B(ν)−1.

Similarly for the projector πu(ν) : Rd → Lu(ν) onto Lu(ν) along Ls(ν) is
given by

πs(ν) = B(ν)

(
0 0
0 Idu

)
B(ν)−1.

The periodicity of the Lyapunov spaces implies the periodicity of the corre-
sponding projectors.

In economics, especially in the context of rational expectations models,
we are often faced with a reversed boundary problem: Find an initial value x
such that the solution ϕ(t, ν, x) of equation (6.5) does not explode, i.e. such
that λ(x, ν) < 0, subject to the restriction

c = Rx, c 6= 0 given, (6.6)

where R is a (r × d)–matrix of rank r. Depending on the rank r one can
distinguish several cases:

r = 0: the requirement (6.6) places no restriction. In this situation xt =
ϕ(t, ν, 0) = 0 for all t is the unique non–explosive solution if and only
if Ls(ν) = {0} or equivalently if ds = dimLs(ν) = 0, respectively
du = dimLu(ν) = d.

r = d: The condition (6.6) determines a unique initial value x = R−1c. If this
x lies in Ls(ν) then xt = ϕ(t, ν, x) is the unique non–explosive solution.
This is obviously the case if Ls(ν) = Rd. Otherwise no non–explosive
solution exists.

0 < r < d: In this case x is determined by a simultaneous equation system
consisting of the restriction (6.6) and the condition πs(ν)x = x , respec-
tively πu(ν)x = 0. The last condition simplifies t (0, Idu)B−1(ν)x = 0
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or (B21, B22)x = 0. Hence, a unique non–explosive solution is obtained
if and only if

rank

(
R(

0 Idu
)
B(ν)−1

)
= rank

(
R

B(2)(ν)

)
= d. (6.7)

where B(2)(ν) = (B21(ν), B22(ν)). If this equation system has a unique
solution, the difference equation (??) is said to be determinate. As
R has r rows and

(
0 Idu

)
B−1(ν) has du = d − ds rows, a necessary

condition for a unique non–explosive solution is that r = ds. If r < ds,
there is a whole family of solutions and the system (6.5) is then called
indeterminate. If r > ds, the equation system is overdetermined and
no solution exists.

Finding a Particular Solution Having completely characterized the lin-
ear part and recognizing that the superposition principle holds, we need to
find a particular solution to solve the affine equation system (6.4).

Theorem 6.4 (Solution Periodic Coeficients). The boundary value problem
consisting of the hyperbolic difference equation (6.4) subject to the initial
condition(6.6), and the boundedness condition admits a unique solution of
the form

xt = Φ(t)x+ x
(b)
t + x

(f)
t

where

x
(b)
t = Φ(t, ν)

∞∑
j=0

Φ(t− j, ν)−1πs(ν)bt−1−j

x
(f)
t = −Φ(t, ν)

∞∑
j=0

Φ(t+ j + 1, ν)−1πs(ν)bt+j

if and only if the rank condition (6.7) is satisfied.

Proof.

Remark 6.3. In order not to overload the notation, the dependence of xt,
x

(b)
t , and x

(f)
t on ν is not explicitly mentioned.
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6.5 Examples of Periodically Time-Varying

Coefficient Models

6.5.1 Uninformativeness of Eigenvalues

This section provides a systematic way to construct time-varying (nonau-
tonomous) difference equations such that every coefficient matrix would im-
ply stability whereas the system actually diverges.4 Consider the determin-
istic two-dimensional system

xt+1 = Atxt in R2

where At = exp(tG(ω))B exp(−tG(ω)), ω > 0, with

G(ω) =

(
0 −ω
ω 0

)
implying exp(tG(ω)) =

(
cosωt − sinωt
sinωt cosωt

)
Because At and B are similar matrices, they share the same eigenvalues.
Define yt = exp(−tG(ω))xt. Thus, yt is obtained from xt by a rotation with
angle ωt. Using the defining difference equation for xt, we see that yt follows
the autonomous difference equation

yt+1 = exp(−(t+ 1)G(ω))xt+1

= exp(−(t+ 1)G(ω)) exp(tG(ω))B exp(−tG(ω))︸ ︷︷ ︸
=At

xt

= exp(−G(ω))Byt.

Thus, xt diverges if and only if yt diverges. The stability of yt is determined
by the matrices exp(−G(ω)) and B. If we can find a matrix B and an ω
such that ρ(exp(−G(ω))B) > 1 and ρ(B) < 1, we have found an example
where each of the “time frozen” coefficient matrices would imply stability,
but where the nonautonomous system is unstable.

One such specification inspired by Elaydi (2005, p. 190) is obtained by
taking

ω = 1 and B =

(
0 1/2

3/2 0

)
.

In this example the eigenvalues of B are ±
√

3/2, thus both smaller than
one in absolute terms, but exp(−G(ω))B has eigenvalues 1.3836 > 1 and

4This construction translates the continuous time approach of Colonius and Kliemann
(2014, p.109–110) to a discrete time framework. Francq and Zaköıan (2001) provide an-
other ad hoc examples in a time series context.
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−0.5421. xt therefore diverges although every At has eigenvalues with mod-
ulus strictly smaller than one.

Another specification is obtained by taking

ω = 2 and B =

(
1/10 1/2
−3/2 1/10

)
.

In this case the eigenvalues of B are 0.1 ± ı
√

3/2 whose moduli are strictly
smaller than one. The eigenvalues of exp(−G(ω))B, however, are 1.3307 and
−0.5711. Thus again, xt diverges although every At has eigenvalues with
modulus strictly smaller than one.

6.5.2 A Numerical Example

To get a better understanding of the behavior of periodically switching linear
difference equations, we consider the following numerical example for d = 2
and p = 2:

A0 =

(
1 0.2
1 1

)
, A1 =

(
1 −0.5
3 −2

)
.

These matrices have eigenvalues λ
(0)
1 = 1.4472 and λ

(0)
2 = 0.5528, respectively

λ
(0)
1 = 0.3660 and λ

(0)
2 = −1.3660. The matrices A1A0 and A0A1 are then

given by

A1A0 =

(
0.5 −0.3
1.0 −1.4

)
, A0A1 =

(
1.6 −0.9
4.0 −2.5

)
.

The Lyapunov, respectively the Floquet, exponents in this case can be com-
puted from the eigenvalues α1 and α2 of A1A0 and A0A1 as λj = 1

2
log |αj|,

j = 1, 2. This gives λ1 = −0.5601 and λ2 = 0.1020. From the eigenvectors
of A1A0 and A0A1 we can compute the stable and the unstable bundle:

Ls(0) = span

(
0.8653
0.5013

)
Lu(0) = span

(
0.1712
0.9852

)
and

Ls(1) = span

(
0.5770
0.8167

)
Lu(1) = span

(
0.3034
0.9529

)
.

The corresponding projector matrices are

πs(0) =

(
1.1119 −0.1932
0.6442 −0.1119

)
πu(0) =

(
−0.1119 0.1932
−0.6442 1.1119

)
and

πs(1) =

(
1.8205 −0.5797
2.5766 −0.8205

)
πu(1) =

(
−0.8205 0.5797
−2.5766 1.8205

)
.
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6.5.3 The New Keynesian Model with Periodically Switch-
ing Policy Rules

As an example consider a simple version of the New Keynesian macroeco-
nomic model introduced and analyzed by Gaĺı (2011). The model consists of
the following three equations:

yt = yt+1 −
1

σ
(it − πt+1), (IS-equation)

πt = βπt+1 + κyt + ut, (forward-looking Phillips-curve)

it = φπt, (Taylor-rule)

where yt, πt, and it denote income, inflation and the nominal interest rate, all
measured as deviations from the steady state. ut is an exogenous cost-push
shock. Furthermore, we assume that σ > 0, κ > 0, and 0 < β ≤ 1. In
addition, φ > 0 measures how aggressive the central bank is in combatting
inflation.

This model can be solved for (yt+1, πt+1)′ by inserting the Taylor-rule and
Phillips-curve into the IS-equation:

xt+1 =

(
πt+1

yt+1

)
=

1

β

(
1 −κ

(φβ − 1)/σ β + κ/σ

)(
πt
yt

)
+

(
−ut/β
ut/(σβ)

)
= A0xt + b0,t (6.8)

Denote the characteristic polynomial of A0 by P(λ) and the corresponding
eigenvalues by λ1 and λ2, then we have

P(λ) = (λ− λ1)(λ− λ2) = λ2 − tr(A0)λ+ detA0

with

trA0 = λ1 + λ2 = 1 +
1

β
+

κ

σβ
> 2

detA0 = λ1λ2 =
1

β
+
κφ

σβ
> 1

∆0 = (trA0)2 − 4 detA0 =

(
1− 1

β

)2

+
κ

σβ

(
κ

σβ
+ 2 +

2

β
− 4φ

)
P(1) = (1− λ1)(1− λ2) =

κ

σβ
(φ− 1) > 0, if φ > 1,

where ∆0 denotes the discriminant of the quadratic equation. Depending
on φ, the roots of P(λ) may be complex. We therefore distinguish two
cases. First assume that φ is high such that ∆0 < 0. In this case we
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Figure 6.2: The Dynamics of the New Keynesian Model with and without
Switching

have two complex conjugate roots. Because detA0 > 1, they are located
outside the unit circle.5 Alternatively assume that φ is small enough such
that ∆0 > 0. In this case both eigenvalues are real. Using the assumption
φ > 1, P(1) > 0. Thus, both roots are either greater or smaller than one.
They cannot be smaller than one because trA0 > 2. Thus, in both cases we
reach the conclusion that the eigenvalues are outside the unit circle. When
φ is smaller than one, we have two real positive roots: one smaller than one,
the other bigger than one. The situation with σ = β = 1 and κ = 0.8 is
illustrated in Figure 6.2 by the red curve which shows the modulus of the
two eigenvalues depending on the value of φ.

As both variables are non-predetermined, the boundedness condition then
determines the unique solution:

xt =
∞∑
j=1

A−j0 b0,t+j−1 =
∞∑
j=1

Q

(
λ−j1 0

0 λ−j2

)
Q−1

(
ut−1+j/β

−ut−1+j/(σβ)

)
where the columns of Q consist of the eigenvectors corresponding to λ1 and
λ2.

Suppose that the central bank changes its policy and fixes the path of the
interest rate. The interest rate then becomes an exogenous variable and the

5Another way to reach this conclusion is by observing that the real part of the roots is
trA0

2 > 1.
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system changes to:

xt+1 =

(
πt+1

yt+1

)
=

1

β

(
1 −κ
−1/σ β + κ/σ

)(
πt
yt

)
+

(
−ut/β

i∗t/σ + ut/(σβ)

)
= A1xt + b1,t (6.9)

where i∗t is the exogenous path of the interest rate. The trace, the determi-
nant, and the discriminant, ∆1, of the characteristic polynomial then become:

trA1 = λ1 + λ2 = 1 +
1

β
+

κ

σβ
> 2

detA1 = λ1λ2 =
1

β
> 1

∆1 = (trA1)2 − 4 detA1 =

(
1− 1

β

)2

+
κ

σβ

(
κ

σβ
+ 2 +

2

β

)
> 0

P(1) = (1− λ1)(1− λ2) = − κ

σβ
< 0.

The discriminant ∆1 becomes unambiguously positive implying that both
eigenvalues are real. Moreover, P(1) < 0 so that one eigenvalue is smaller
than one whereas the other bigger than one. Thus, the boundedness con-
dition does not determine a unique solution so that we are faced with a
situation of indeterminacy. The implications of this indeterminacy for mon-
etary policy and possible remedies are discussed in Gaĺı (2011). Taking the
same numerical values as before, i.e. σ = β = 1 and κ = 0.8, we get λ1 = 0.42
and λ2 = 2.38.

Suppose next that the central bank switches deterministically between
the two policies starting with the model with Taylor rule followed by the
model without Taylor rule. This and similar settings are discussed in Gaĺı
(2011, section 4.1.1) and, in particular, ?. As shown in Figure 6.2 there is
still a region of the parameter space where the model becomes determinate.
However, the central bank must be much more aggressive in combatting
inflation. In the numerical example φ must be greater than 2.4 instead of
one.

6.6 Deterministically Time-Varying Coefficients

deterministic MET

6.7 Randomly Time-Varying Coefficients

Oseledets Theorem
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6.8 Examples of Randomly Time-Varying Co-

efficient Models

6.8.1 Fractal Dimension of Random Coefficient Mod-
els

A surprising feature of random affine transformations is their ability to draw
two-dimensional pictures. Consider the following example from Berger (1993,
p.164):

xt+1 = Atxt + bt

and (At, bt) is chosen randomly from the set {(A(i), b(i))}, i = 1, 2, where the
corresponding matrices and vectors are specified as

A1 =

(
0.183953 0.0

0.0 0.1846053

)
b1 =

(
0.7331354
0.4357292

)
A2 =

(
0.8728180 −0.4115444
0.4115444 0.8728180

)
b2 =

(
0.2725137
−0.1435450

)
.

The configurations {(A(i), b(i))} are chosen independently with probabilities
p1 = 0.06982 and p2 = 1 − p1 = 0.93018. A simulation with 10′000 replica-
tions results in the scatter plot 6.3. Note the fractal geometry of this picture.
This is not a coincidence as emphasized in Berger (1993) where many other
examples are presented.

An interesting aspect of this type of models is that it is possible to start
from a picture which is taken as the stationary distribution of the random
process. The corresponding parameters are then computed using the ergod-
icity of the process. See Diaconis and Freedman (1999, section 2.3) for more
details and references.
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Figure 6.3: Fractal Dimension of Randomly Varying Affine Transformations
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Appendix A

Elements of Calculus

A.1 Prerequisites for one Variable Functions

This section summarizes some concepts and results from elementary calculus
pertaining real valued functions in one variable.

For any differentiable function f a point x with the property f ′(x) = 0
is called a critical point. If in addition f ′′(x) 6= 0 the point is said to be
a nondegenerate critical point. For example,the logistic function (1.8) has
x = 1/2 as a nondegenerate critical point. If f(x) = x3 then x = 0 is a
degenerate critical point.

Theorem A.1 (Intermediate Value Theorem). Let f : I → R be a continu-
ous function where I is an interval.1 Take any value y between f(a) and f(b)
where a, b ∈ I and a < b then there exists at least one x ∈ I with a < x < b
such that y = f(x).

This theorem says that f attains all the values between f(a) and f(b);
or, to put it otherwise, f([a, b]) is connected.

Theorem A.2 (Mean Value Theorem). Let f : I → R be a continuous
function where I is an interval. For any values a, b ∈ I with a < b and f
differentiable on (a, b) there exists x ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(x).

Hence there exists a point x at which the derivative is equal to the slope
of the secant line from (a, f(a)) to (b, f(b)).

1It does not matter whether I is open, closed, or half-open.

161
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As the dynamics is mostly generated by iterating a given function, it is
instructive to revisit the chain rule of differentiation and some of its implica-
tions. Let f, g : R→ R two differentiable function then for their composition
denoted by ◦ we have

(g ◦ f)′(x) = g′(f(x))f ′(x) = g′(y)f ′(x)

where y = f(x). Note that the derivative of g must be taken at the correct
point y.

The iteration of a given function f starting in x0 leads to x1 = f(x0),
x2 = f(x1), and xt = f(xt−1), t = 1, 2, . . . Thus, xt = f ◦ · · · ◦ f︸ ︷︷ ︸

t−fold

(x) denoted

by xt = f t(x). The application of the chain rule leads to

(f t)′(x) = f ′(xt−1) . . . f ′(x1)f ′(x0).

The point here is that we do not need to compute f t to calculate (f t)′.
This is important because the explicit computation of f t can quickly become
intractable or impossible, especially for large t. An only three-fold iteration
of the logistic function (1.8), for example, makes f 3 already a polynomial of
degree 6. For µ = 1, starting at x0 = 1/4 leads to x1 = 3/16 and x2 = 39/256.
As f ′(x) = (1 − 2x), the derivative of f 3 at x = 1/4 can be computed as
follows.

(f 3)′(1/4) = f ′(39/256)f ′(3/16)f ′(1/4) =

(
1− 78

256

)(
1− 6

16

)(
1− 2

4

)
=

178

256

10

16

2

4

A.2 Differentiation in Higher Dimensions

Definition A.1. Suppose E is an open set in Rn, F maps E into Rm, and
x ∈ E. If there exists a linear transformation A from Rn into Rm such

lim
h→0

‖F (x+ h)− F (x)− Ah‖
‖h‖

= 0,

then we say that F is differentiable at x, and we write

F ′(x) = A, dF (x) = F (x+ h)− F (x) = Adx

A is called the derivative or total derivative.
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Definition A.2. A differentiable mapping F from an open set E ⊆ Rn into
Rm is called continuously differentiable in E if the linear transformation F ′

from Rn into Rm is continuous on E. We write F ∈ C1(E).

Theorem A.3. Suppose E is an open set in Rn, f maps E into Rm, f is
differentiable at x0 ∈ E, g maps an open set containing f(E) into Rk, and
g is differentiable at f(x0). Then the mapping F of E into Rk defined by
F (x) = (g ◦ f)(x) = g(f(x)) is differentiable at x0, and

F ′(x0) = g′(f(x0))f ′(x0)

Consider again a function F from an open set E ⊆ Rn into Rm and let
{e1, . . . , en} and {u1, . . . , um} be the standard bases of Rn and Rm. The
components of F are the function f1, . . . , fm defined by

F (x) =
m∑
i=1

fi(x)ui, x ∈ E.

The partial derivative of fi with respect to xj, keeping the other variables
fixed, is defined as

(Djfi)(x) =
∂fi(x)

∂xj
= lim

t→0

fi(x+ tej)− fi(x)

t

Theorem A.4. Suppose that F is differentiable at point x, then the partial
derivatives exist and we have

F ′(x) =


∂f1(x)
∂x1

. . . ∂f1(x)
∂xn

...
. . .

...
∂fm(x)
∂x1

. . . ∂fm(x)
∂xn


This matrix is called the Jacobian matrix. The converse is not true. In
particular, we have

F ′(x)ej =
m∑
i=1

(Djfi)(x)ui, 1 ≤ j ≤ n.

Theorem A.5. Suppose F : E ⊂ Rn → Rm, E open, such F (x) =
(f1(x), . . . , fm(x))′. Then, F ∈ C1(E) if and only if the partial derivatives

Djfi = ∂fi(x)
∂xj

exist and are continuous for 1 ≤ i ≤ m and 1 ≤ j ≤ m.
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Thus, we have{
partial derivatives

are continuous

}
⇒ derivative of F exists{
⇒ F is continuous

⇒ partial derivatives exist

}

Let F : E ⊂ Rn → R, E open, with F ∈ C2(E) and define ∂
∂xj

(
∂F (x)
∂xi

)
=

∂2F (x)
∂xj∂xi

. Arranged in an n× n matrix, we get the Hessian matrix :

D2Fx =


∂2F
∂x21

∂2F
∂x2∂x1

. . . ∂2F
∂xn∂x1

∂2F
∂x1∂x2

∂2F
∂x22

. . . ∂2F
∂xn∂x2

...
...

. . .
...

∂2F
∂x1∂xn

∂2F
∂x2∂xn

. . . ∂2F
∂x2n


The Hessian matrix is symmetric because

∂2F
∂xj∂xi

= ∂2F
∂xi∂xj

as long as F ∈ C2(E).

Definition A.3. Let F : U ⊆ Rn −→ R be a differentiable function at
x∗. The derivative viewed as vector of the partial derivatives is called the
gradient vector of F at x∗ and denoted by (∇F )(x∗):

(∇F )(x∗) =


∂F
∂x1

(x∗)
...

∂F
∂xn

(x∗)

 =
n∑
i=1

(DiF )(x)ei.

Definition A.4. Let u be a unit vector (i.e. ‖u‖ = 1) of Rn, then

lim
h→0

F (x+ hu)− F (x)

h
= 〈(∇F )(x), u〉 = ‖(∇F )(x)‖ cos θ

is called the directional derivative of F at x in the direction of u.

Theorem A.6. Let F : U ⊆ Rn −→ R be a C1(U) function. At any point
x ∈ U at which ∇F (x) 6= 0, the gradient vector points at x into the direction
in which F increases most rapidly.
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Theorem A.7 (Implicit Function Theorem). Let F (y, x) ∈ C1(E) with E ⊆
Rn+m, E open, into Rn such that F (y0, x0) = 0 for some point (y0, x0) ∈ E.
Put A = F ′(y0, x0) and assume that Ay is invertible. Then there exists open
sets U ⊆ Rn+m and W ⊆ Rm, with (y, x) ∈ U and x ∈ W having the
following properties:

� To every x ∈ W corresponds a unique y such that

(y, x) ∈ U and F (y, x) = 0.

� If this y is defined to be y = G(x), thenG ∈ C1(W ) intoRn, G(x0) = y0,
F (G(x), x) = 0 for x ∈ W .

� G′(x0) = −(Ay)
−1Ax.
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Appendix B

Complex Numbers

As the simple quadratic equation x2 + 1 = 0 has no solution in the field
of real numbers, R, it is necessary to envisage the larger field of complex
numbers C. A complex number z is an ordered pair (a, b) of real numbers
where ordered means that we regard (a, b) and (b, a) as distinct if a 6= b. We
endow the set of complex numbers by an addition and a multiplication. Let
x = (a, b) and y = (c, d) be two complex numbers, then we have the following
definitions:

addition: x+ y = (a, b) + (c, d) = (a+ c, b+ d)

multiplication: xy = (a, b)(c, d) = (ac− bd, ad+ bc).

These two operations will turn C into a field where (0, 0) and (1, 0) play
the role of 0 and 1.1 The real numbers R are embedded into C because we
identify any a ∈ R with (a, 0) ∈ C.

The number ı = (0, 1) is of special interest. It solves the equation x2+1 =
0, i.e. ı2 = −1. The other solution being −ı = (0,−1). Thus any complex
number z = (a, b) may be written alternatively as z = (a, b) = a + ıb where
a, b are arbitrary real numbers.2

1Substraction and division can be defined accordingly:

subtraction: (a, b)− (c, d) = (a− c, b− d)

division: (a, b)/(c, d) =
(ac+ bd, bc− ad)

(c2 + d2)
, c2 + d2 6= 0.

2A more detailed introduction of complex numbers can be found in Rudin (1976) or
any other mathematics textbook.
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Figure B.1: Representation of a complex number

An element z ∈ C can be represented in two ways:

z = a+ ıb Cartesian coordinates

= reıθ = r(cos θ + ı sin θ) polar coordinates.

In the representation in Cartesian coordinates a = Re(z) = <(z) is called
the real part whereas b = Im(z) = =(z) is called the imaginary part of z.

A complex number z can be viewed as a point in the two-dimensional
Cartesian coordinate system with coordinates (a, b). This geometric inter-
pretation is represented in Figure B.1.

The absolute value or modulus of z, denoted by |z|, is given by r =√
a2 + b2. Thus the absolute value is nothing but the Euclidean distance of

z viewed as a point in the complex plane (the two-dimensional Cartesian
coordinate system) to the origin (see Figure B.1). θ denotes the angle to the
positive real axis (x-axis) measured in radians. It is denoted by θ = arg z. It
holds that tan θ = b

a
. Finally, the conjugate of z, denoted by z̄, is defined by

z̄ = a− ıb.
Setting r = 1 and θ = π, gives the following famous formula:

eıπ + 1 = (cosπ + ı sin π) + 1 = −1 + 1 = 0.
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This formula relates the most famous numbers in mathematics.
From the definition of complex numbers in polar coordinates, we get

immediately the following implications:

cos θ =
eıθ + e−ıθ

2
=
a

r
,

sin θ =
eıθ − e−ıθ

2ı
=
b

r
.

Further implications are de Moivre’s formula and the Pythagoras’ theorem
(see Figure B.1):

de Moivre’s formula
(
reıθ
)n

= rneınθ = rn(cosnθ + ı sinnθ)

Pythagoras’ theorem 1 = eıθe−ıθ = (cos θ + ı sin θ)(cos θ − ı sin θ)
= cos2 θ + sin2 θ

From Pythagoras’ theorem it follows that r2 = a2 + b2. The representation
in polar coordinates allows to derive many trigonometric formulas.

Consider the polynomial P(z) = φ0−φ1z−φ2z
2−. . .−φpzp of order p ≥ 1

with φ0 = 1.3 The fundamental theorem of algebra then states that every
polynomial of order p ≥ 1 has exactly p roots in the field of complex numbers.
Thus, the field of complex numbers is algebraically complete. Denote these
roots by λ1, . . . , λp, allowing that some roots may appear several times. The
polynomial can then be factorized as follows:

P(z) =
(
1− λ−1

1 z
) (

1− λ−1
2 z
)
. . .
(
1− λ−1

p z
)
.

This expression is well-defined because the assumption of a nonzero constant
(φ0 = 1 6= 0) excludes the possibility of roots equal to zero. If we assume
that the coefficients φj, j = 0, . . . , p, are real numbers, the roots appear in
conjugate pairs. Thus if z = a+ ıb, b 6= 0, is a root then z̄ = a− ıb is also a
root.

3The notation with “−φjzj” instead of “φjz
j” was chosen to conform to the notation

of auto regressive models.
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Appendix C

Concepts of Linear Algebra

This appendix summarizes the concepts and results from linear algebra which
are relevant for this book. For details and proofs the reader is referred to
standard textbooks (see f.e. Meyer (2000) or Strang (2003)).

C.1 Algebraic and Topological Structure

The state space X is endowed with an algebraic and a topological structure.
The algebraic structure is the one of vector or linear space over the real
number R. This means that X is closed under the addition operation + and
the multiplication of a vector by a scalar. More precisely, αx+βy ∈ X for all
x, y ∈ X and all α, β ∈ R. The topological structure is induced by a norm.
A norm associates to each vector x ∈ X a positive real number ‖x‖ with the
following properties:

(i) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0.

(ii) ‖αx‖ = |α| ‖x‖ for all x ∈ X and all α ∈ R.

(iii) ‖x+y‖ ≤ ‖x‖+‖y‖ for all x, y ∈ X. This property is called the triangle
inequality.

‖x‖ can be interpreted as the length of the vector. A vector space with a
norm is called a normed space. Every normed space is also a topological space
allowing for the definition of openness, closeness, and continuity.

A metric space is a vector space with a distance or metric. A distance is
a function d(x, y) : X×X→ [0,∞) such that for all x, y, z ∈ X:

(i) nonnegativity: d(x, y) ≥ 0.

(ii) identity of indiscernibles: d(x, y) = 0 implies x = y.
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(iii) symmetry: d(x, y) = d(y, x).

(iv) triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

A norm induces a metric by defining d(x, y) = ‖x−y‖. Hence, normed spaces
are a subset of metric spaces.

Most of the time X is identified with the d-dimensional Euclidean space
Rd. The corresponding Euclidean norm for some vector x = (x1, . . . , xd) is
defined as ‖x‖ =

√
x2

1 + . . .+ x2
d.

Two vectors x and y are called linearly dependent if there exists α, β ∈ R,
not both equal to zero, such that αx + βy = 0, otherwise they are called
linearly independent.

C.2 Linear Transformations

A linear transformation is a function A : X→ X such that

(i) additivity: A(x+ y) = Ax+ Ay for all x, y,∈ X.

(ii) homogeneity: A(αx) = αAx for all x ∈ X and all α ∈ R.

If X is identified with the d-dimensional Euclidean space Rd, every linear
transformation can be represented as a two-dimensional array of numbers,
called a matrix:1

A = (A)i,j =

a11 . . . a1d
...

. . .
...

ad1 . . . add


The set of all d× d matrices is denoted by M(d).

Every matrix defines four fundamental vector (sub)spaces:

(i) column space R(A) = {y ∈ Rd : ∃x ∈ Rd with y = Ax}

(ii) null space or kernel, N(A) = {x ∈ Rd : Ax = 0}

(iii) row space, R(A′)

(iv) left null space, N(A′)

Every matrix transforms its row space to its column space.

1In this appendix we focus on quadratic matrices only.
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Matrix operations We define the following matrix operations:

(i) addition: C = A + B is the matrix with the ij-th element equal to
cij = aij + bij.

(ii) multiplication: C = AB is the matrix with the ij-th element equal
to cij =

∑d
k=1 aikbkj. Note that the multiplication is in general not

commutative, i.e. AB 6= BA.

(iii) transposition: A′ is the matrix with the indices i and j interchanged,
i.e. the ij-th element is aji. Note that (A′)′ = A

The matrix addition and multiplication are associative and distributive. The
rank of a matrix A denoted by rank(A) is the maximal number of linearly
independent columns or rows. The following relations hold: rank(AB) ≤
min{rank(A), rank(B)}, rank(A′) = rank(A), and rank(A) = rank(AA′) =
rank(A′A). The index of a matrix is the smallest integer k such rankAk =
rankAk+1. For nonsingular matrices indexA = 0. Alternative characteriza-
tions of the index of a matrix can be found in Meyer (2000, p.395).

Special matrices Special type of matrices are:

(i) zero matrix 0d: aij = 0 for all i, j = 1, . . . , d. Most of the time the
index d is suppressed.

(ii) identity matrix Id: aii = 1 for all i = 1, . . . , d and aij = 0 for all i, j =
1, . . . , d and i 6= j. Id has ones on the diagonal and zeros elsewhere.

(iii) diagonal matrix: all off-diagonal elements aij, i 6= j, are equal to zero.

(iv) lower triangle matrix: all elements aij, i < j, are equal to zero.

(v) upper triangle matrix: all elements aij, i > j, are equal to zero.

(vi) symmetric matrix: aij = aji or A′ = A.

(vii) skew symmetric matrix: aij = −aji or A′ = −A. Hence, skew symmet-
ric matrices have zeros on the diagonal.

(viii) inverse matrix: a matrix A−1 is called the inverse of A if AA−1 =
A−1A = Id. A matrix with no inverse is called singular. Note that
(A−1)−1 = A, (AB)−1 = B−1A−1, and (A′)−1 = (A−1)′. An invertible
matrix has necessarily rank d.
The set of all invertible d×d matrices, also known as the general linear
group, is denoted by GL(d).
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(ix) orthogonal matrix: A′A = AA′ = Id. Hence, the transpose of A is its
inverse.

(x) nilpotent matrix: there exits an integer k > 0 such that Ak = 0. The
smallest such number is called the index of A.

(xi) projector or idempotent matrix: A2 = A.

Matrix functions Matrix functions are functionals from M(d)→ R. The
two most popular matrix functions are the trace, tr(A), and the determinant,
det(A) or |A|.

The trace of A is defined as the sum of its diagonal elements, i.e. tr(A) =∑d
i=1 aii. Some properties of the trace are:

tr(AB) = tr(BA)

tr(ABC) = tr(BAC) = tr(CAB)

The determinant is characterized by the following three properties:

(i) det Id = 1

(ii) The determinant changes sign when two rows are interchanged.

(iii) The determinant is a linear function of each row taken separately.

These three properties imply the following rules:

(i) If two rows are equal detA = 0.

(ii) Subtracting a multiple of one row from another row leaves detA un-
changed.

(iii) A matrix with a row of zeros has detA = 0.

(iv) If A is triangular or diagonal, detA = a11a22 . . . add.

(v) detA = 0⇔ A is singular. detA 6= 0⇔ A is invertible.

(vi) det(AB) = detA detB.
Hence, detAB = detBA and detA−1 = (detA)−1.

(vii) detA = detA′. Every rule for rows is true for columns.

(viii) For any orthogonal matrix Q, detQ = ±1.
Proof : 1 = det In = detQ′Q = detQ′ detQ = (detQ)2.
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Matrix Norm A matrix norm is a norm on the vector space M(d), the set
of all d× d matrices. Thus, for A ∈M(d), ‖A‖ : M(d)→ R must satisfy the
usual requirements:

(i) ‖A‖ ≥ 0, and ‖A‖ = 0 if and only if A = 0.

(ii) ‖αA‖ = |α| ‖A‖ for all α ∈ R.

(iii) ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈M(d).

In addition, we require for the matrix norm to be sub-multiplicative:

‖AB‖ ≤ ‖A‖‖B‖ for all A,B ∈M(d).

For a detailed introduction to matrix norms see Meyer (2000, section 5.2).

A matrix norm can be specified as being induced from any vector norm
on Rd. If ‖x‖ is any vector norm on Rd then we may consider the induced
matrix norm or operator norm:

‖A‖ = max
‖x‖=1

‖Ax‖.

Thus the induced matrix norm is the maximum amount a vector on the unit
sphere can be stretched.2 The induced matrix norm is sub-multiplicative
which implies ‖Ax‖ ≤ ‖A‖‖x‖. Moreover, Gelfand’s formula holds:

lim
n→∞

‖An‖1/n = ρ(A)

where ρ(A) denotes the spectral radius of A.

Some common induced matrix norms are:

(i) If ‖x‖1 =
∑d

j=1 |xj|, ‖A‖1 = max1≤j≤d
∑d

i=1 |aij|, the maximum abso-
lute column sum.

(ii) If ‖x‖2 =
√
x2

1 + . . .+ x2
d, the Euclidean norm, ‖A‖2 =

√
ρ(A′A) which

equals the largest singular value of A.

(iii) If ‖x‖∞ = max1≤j≤d{|xj|}, ‖A‖∞ = max1≤i≤d
∑d

j=1 |aij|, the maximum
absolute row sum.

2Because the norm is a continuous function and because the unit sphere is compact,
the maximum is attained.



176 APPENDIX C. CONCEPTS OF LINEAR ALGEBRA

Another way to introduce matrix norms is to view A as an element of the
vector space Rd2 . Using the Euclidean norm this leads to the Frobenius or
Hilbert-Schmidt matrix norm:

‖A‖ =

√√√√ n∑
i,j

a2
ij =

√
tr(A′A) =

√√√√ d∑
j=1

λi

where λj are the eigenvalues of A′A. Thus the Frobenius norm stakes the
columns of A into a long d2-dimensional vector and takes its Euclidian norm.

Because all norms are equivalent in finite dimensional spaces, i.e. for two
norm ‖.‖α and ‖.‖β there exists positive scalars a and b such that a‖A‖α ≤
‖A‖β ≤ b‖A‖α, it does not really matter which one we will use. The choice
can therefore be made on the basis of convenience.

Generalized Inverse Let A be a singular matrix of index k with rankAk =
r. Then there exists a nonsingular matrix Q such that

Q−1AQ =

(
C 0
0 N

)
where C is a r × r nonsingular matrix and N is a nilpotent matrix of index
k (see Meyer, 2000, pp.397). This block diagonal matrix is called a core-
nilpotent decomposition of A. When A is nonsingular, k = 0 and r = d, so
N is not present and Q = Id and C = A.

The core-nilpotent decomposition allows the definition of the Drazin in-
verse denoted by AD:

AD = Q

(
C−1 0

0 0

)
Q−1.

This is an example of a generalized inverse. It is unique and characterized
algebraically by the following three properties:

(i) ADAAD = AD

(ii) AAD = ADA

(iii) Ak+1AD = Ak

If indexA ≤ 1, the Drazin inverse is called the group inverse. It has the
additional property that AADA = A.

The Drazin inverse has to be distinguished from the Moore-Penrose gen-
eralized inverse A†. The latter is uniquely characterized by
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(i) AA†A = A

(ii) A†AA† = A†

(iii) (AA†)′ = AA†

(iv) (A†A)′ = A†A

If A is an n×m, n > m, with m linearly independent columns, the Moore-
Penrose inverse becomes the least-squares inverse A† = (A′A)−1A′. For fur-
ther details on generalized inverses consults Campbell and Meyer (1979).

C.3 Eigenvalues and Eigenvectors

Given a d× d matrix A, the scalars λ and vectors x 6= 0 satisfying Ax = λx
are called eigenvalues and eigenvectors of A and any pair (λ, x) is called an
eigenpair of A. The set of all distinct eigenvalues is denoted by σ(A) and is
called the spectrum of A. These definitions imply

� λ ∈ σ(A)⇔ A− λId is singular ⇔ det(A− λId) = 0.

� The null space of A − λId, denoted by N(A − λId), is the set of all
eigenvectors associated with λ and is called an eigenspace. N(A −
λId) is a subspace of Rd. The dimension of N(A − λId) is called the
geometric multiplicity of λ. Thus, the geometric multiplicity gives the
maximal number of linearly independent eigenvectors associated to a
given eigenvalue.

� The largest modulus of all eigenvalue is called the spectral radius of A
and is denoted by ρ(A), i.e. ρ(A) = maxλ∈σ(A) |λ|.

The characterization of the eigenvalues as scalars satisfying det(A−λId) =
0 implies that the eigenvalues are the roots (zeros) of the polynomial P(λ) =
det(A− λId). As P(λ) is a polynomial of degree d, called the characteristic
polynomial, all eigenvalues must satisfy the characteristic equation P(λ) = 0.
As the leading term of the characteristic polynomial is (−1)dλd and thus
nonzero, there are d eigenvalues. Some of these eigenvalues may, however,
appear several times. In this case we speak of repeated eigenvalues. The
number of times an eigenvalue is repeated is called the algebraic multiplicity
of λ. If λ appears only once the eigenvalue is called simple. Although A
contains just real entries some of the eigenvalues may be complex numbers.
In this case, the eigenvalues appear as conjugate pairs, i.e. if λ ∈ σ(A) then
λ̄ ∈ σ(A), and the eigenvectors will have complex entries to ensure that
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Ax = λx ∈ Rd. It is clear that eigenvectors are not uniquely determined:
if x is an eigenvector, αx, α ∈ R, is also an eigenvector corresponding to
the same eigenvalue. In numerical applications eigenvectors are therefore
normalized: f.e. its first entry is set to one or the length of x, ‖x‖, is set to
one.

The eigenvalues depend continuously on the entries of the matrix A. This
is, however, not true for the eigenvectors.

From the fundamental theorem of algebra we know that the characteristic
polynomial can be factorized as

P(λ) = det(A− λId) = (λ1 − λ) . . . (λd − λ)

where that λi’s denote the eigenvalues. Setting λ = 0, we see that det(A) =
λ1 . . . λd, i.e. the determinant of A equals the product of all eigenvalues. In
addition, one can prove that the sum of the eigenvalues equals the trace of
A. Hence, trA = λ1 + . . . + λn. The index of an eigenvalue λ is defined
as the index of the matrix (A − λId), i.e. the smallest integer k such that
rank(A− λId)k = rank(A− λId)k+1.

C.4 Similarity and Jordan Form

Two matrices A and B are called similar if there exists a nonsingular matrix
Q such that A = QBQ−1. Obviously, two similar matrices share the same
eigenvalues. An important special case arises if B is a diagonal matrix.
The matrix A is then called diagonalizable. For a diagonalizable matrix,
AQ = QΛ where Λ is a diagonal matrix which holds the eigenvalues of A on
the diagonal. The eigenvectors of A are then the columns of Q. On the other
hand, if A has d linearly independent eigenvectors then A is diagonalizable
where the columns of Q are made up by the d eigenvectors. Note that the
diagonalizing matrix is not unique. The equation AQ = QΛ only holds if the
columns of Q are the eigenvectors of A. Other matrices Q will not produce
a diagonal Λ.

A matrix with distinct eigenvalues can be diagonalized. Its eigenvectors
are not necessarily orthogonal to each other. Normal matrices are matrices
which commute with their transpose, i.e. AA′ = A′A.3 These matrices are
exactly those which are orthogonally similar to a diagonal matrix, i.e. there
exists an orthogonal matrix Q such that A = QΛQ′. Examples of such real
matrices include symmetric matrices (A = A′), skew-symmetric (A = −A′),
and orthogonal matrices (A′A = AA′ = Id). A is symmetric if and only if A

3We just consider matrices with real entries.
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is orthogonally similar to a real diagonal matrix. Skew symmetric matrices
have pure imaginary eigenvalues.

The following theorem is important for the geometric interpretation of
linear difference equations.

Theorem C.1 (Spectral Decomposition). A matrix A with spectrum σ(A) =
{λ1, λ2, . . . , λs} is diagonalizable if and only if there exist matrices {P1, P2, . . . , Ps}
such that

A = λ1P1 + λ2P2 + . . .+ λsPs (C.1)

where the Pj’s have the following properties:

(i) Each Pj is a projection onto N(A− λjId) along R(A− λjId);

(ii) PiPj = 0 for i 6= j;

(iii) P1 + P2 + . . .+ Ps = Id.

The expansion (C.1) is known as the spectral decomposition of A, and the
Pj’s are called the spectral projectors associated with A.

An implication of the Spectral Decomposition (C.1) is a corresponding
decomposition of At.

Corollary C.1. If A has Spectral Decomposition (C.1), At has Spectral
Decomposition

At = λt1P1 + λt2P2 + . . .+ λtsPs.

The spectral projectors take a particularly simple form if the correspond-
ing eigenvalue is simple.

Corollary C.2. If A = QΛQ−1 with a simple eigenvalue λ, then the corre-
sponding spectral projector Pλ is

Pλ =
qλq

λ

qλqλ

where qλ and qλ are right and left eigenvectors associated with λ. Thus, qλ
and qλ are given by the corresponding column in Q, respectively row in Q−1.

Unfortunately, not all matrices are diagonalizable. These, so-called de-
fective matrices, do not have d linearly independent eigenvectors. From the
arguments presented above it is clear that a failure of diagonalizability can
only arise if some eigenvalues are repeated. The reverse is, however, not true.
Even if some eigenvalues are repeated there can still exist a full set of linearly
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independent eigenvectors. Take, f.e. the identity matrix as an example: it
has one eigenvalue 1 which is repeated d times and nevertheless has a full
set of d linearly independent eigenvectors. The eigenvalues is this case are
called semisimple. For these eigenvectors the algebraic multiplicity equals
its geometric multiplicity. If the matrix has a deficiency of eigenvectors it
cannot be diagonalizable, but it can be transformed by similarity to a block
diagonal form known as the Jordan form. This makes the matrix as close to
a diagonal matrix as possible.

Theorem C.2 (Jordan Form). Let A be a d× d matrix with distinct eigen-
values σ(A) = {λ1, . . . λs}. Then there exists is nonsingular matrix Q such
that

Q−1AQ = J =


J(λ1) 0 · · · 0

0 J(λ2) · · · 0
...

...
. . .

...
0 0 · · · J(λs)

 (C.2)

where J consists of s Jordan segments J(λj), one for each eigenvalue λj ∈
σ(A). Each segment J(λj) is made up of mj = dim N(A− λjId) Jordan
blocks Jl(λj), l = 1, . . . ,mj:

J(λj) =


J1(λj) 0 · · · 0

0 J2(λj) · · · 0
...

...
. . .

...
0 0 · · · Jmj(λj)

 with Jl(λj) =


λj 1

. . . . . .
. . . 1

λj

 .

The largest Jordan block in J(λj) is kj × kj where kj = index(λj). The
number of i× i Jordan blocks in J(λj) is given by

νi(λj) = ri−1(λj)− 2ri(λj) + ri+1(λj)

where ri(λj) = rank(A− λjId)i. Note that Jordan blocks Jl(λ) can be writ-
ten as Jl(λ) = λIi +Ni where i is the size of the block and Ni is a nilpotent
matrix of index i− 1, i.e. N i−1 = 0.

The structure of the Jordan form is unique in the sense the number of
Jordan segments as well as the number and sizes of Jordan blocks in each
segment is uniquely determined by A. Every matrix similar to A has the
same Jordan form. Clearly, the matrix Q is not unique.

In order to clarify these ideas, consider the following example from Meyer
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(2000, p.590-591):

A =


5 4 0 0 4 3
2 3 1 0 5 1
0 −1 2 0 2 0
−8 −8 −1 2 −12 −7

0 0 0 0 −1 0
−8 −8 −1 0 −9 −5

 .

The characteristic polynomial is P(λ) = λ6 − 6λ5 + 9λ4 + 8λ3 − 24λ2 + 16 =
(λ− 2)4(λ+ 1)2. Hence, there are two eigenvalues λ1 = 2 and λ2 = −1 with
algebraic multiplicity 4 for and 2, respectively. This implies that there are
two Jordan segments J(2) and J(−1). The next step is the computation
of the ranks ri(2) = rank((A − 2I6)i) and ri(−1) = rank((A + I6)i) until
rk(λj) = rk+1(λj):

r1(2) = rank(A− 2I6) = 4 r1(−1) = rank(A+ I6) = 4

r2(2) = rank((A− 2I6)2) = 3 r2(−1) = rank(A+ I6) = 4

r3(2) = rank((A− 2I6)3) = 2

r4(2) = rank((A− 2I6)4) = 2

so that the index of λ1 = 2 and λ2 = −1 are k1 = 3 and k2 = 1, respectively.
Hence, the largest Jordan block of J(2) is 3 × 3 while the largest Jordan
block of J(−1) is 1 × 1. Thus, the eigenvalue λ2 = −1 is semisimple and
the Jordan segment J(−1) is a diagonal matrix. To determine the number
of i× i Jordan blocks in J(2), we compute

ν3(2) = r2(2)− 2r3(2) + r4(2) = 1 ⇒ one 3× 3 block in J(2)

ν2(2) = r1(2)− 2r2(2) + r3(2) = 0 ⇒ no 2× 2 block in J(2)

ν1(2) = r0(2)− 2r1(2) + r2(2) = 1 ⇒ one 1× 1 block in J(2)

ν1(−1) = r0(2)− 2r1(2) + r2(2) = 2 ⇒ two 1× 1 blocks in J(−1).

This implies that

J(2) =


2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 2

 and J(−1) =

(
−1 0

0 −1

)
.

so that finally

J =

(
J(2) 0

0 J(−1)

)
.
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To complete the computation of the Jordan form, the structure of the
similarity matrix Q must be determined. For this purpose it is sufficient to
focus on a single i×i Jordan block Jl(λ) in the Jordan segment J(λ). Denote
by Ql = (x1, x2, . . . , xi) the portion of Q = (. . . |Ql| . . .) that corresponds to
the position of Jl(λ) in J . Because AQ = QJ , implies AQl = QlJl(λ), we
arrive at the following equation system:

A(x1, x2, . . . , xi) = (x1, x2, . . . , xi)


λ 1

. . . . . .
. . . 1

λ


i×i

,

or more explicitly

Ax1 = λx1 ⇒ x1 is an eigenvector ⇒ (A− λId)x1 = 0

Ax2 = x1 + λx2 ⇒ (A− λId)x2 = x1 ⇒ (A− λId)2x2 = 0

...
...

...

Axi = xi−1 + λxi ⇒ (A− λId)xi = x−1 ⇒ (A− λId)ixi = 0.

Thus, x1, the first column of Ql, is an eigenvector. The other vectors are
called generalized eigenvectors or more preciesely generalized eigenvectors of
order k if x ∈ N((A− λId)k), but x /∈ N((A− λId)k−1).4

Continuing with the numerical example from above, we first take the 3×3
Jordan block J1(2). A corresponding eigenvector is x1 = (1, 0,−1,−1, 0,−1)′.
A generalized eigenvector of order one for the eigenvalue λ02 must then
fulfill (A − 2I6)x2 = x1 or (A − 2I6)2x2 = 0. Such vector is given by x2 =
(0, 1, 0,−1, 0,−1)′. A generalized eigenvector of order two then must satisfy
(A − 2I6)x3 = x2 or (A − 2I6)3x3 = 0. Such a vector is given by x3 =
(1, 0, 0,−1, 0,−1)′. Hence, Ql = (x1, x2, x3). A second linearly independent
eigenvector for the eigenvalue λ = 2 is x4 = (−1, 0, 1,−8, 0, 1)′. For the
eigenvalue λ = −1 a full set of eigenvectors exists. Two linearly independent
eigenvectors are x5 = (1, 0, 0,−2, 0,−2)′ and x6 = (11, 2, 2,−24,−2,−22)′.
Putting these eigenvectors together gives the similarity matrix Q:

Q =


1 0 1 −1 1 11
0 1 0 0 0 2
−1 0 0 1 0 2
−1 −1 −1 −8 −2 −24

0 0 0 0 0 −2
−1 −1 −1 1 −2 −22

 .

4For more details see Meyer (2000, pp.593).
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Although the matrix A consists of real numbers only, its Jordan form can
still have complex entries because the roots of the characteristic polynomial
are not necessarily real. However, they appear as conjugate pairs so that it is
possible to construct a real block diagonal Jordan form with only real Jordan
blocks (see Colonius and Kliemann, 2014, section 1.2). The Jordan blocks
corresponding to complex eigenvalues consist of blocks of 2 × 2 matrices.
Suppose that λ = α + ıβ, β 6= 0, is a complex eigenvalue then its conjugate
λ̄ = α− ıβ is also an eigenvalue. By observing that

C(λ) =

(
α −β
β α

)
= Q

(
α + ıβ 0

0 α− ıβ

)
Q−1

with

Q =

(
−ı 1
−1 ı

)
and Q−1 =

1

2

(
ı −1
1 −ı

)
,

the real Jordan form JR can be constructed as follows. For the real eigen-
values one proceeds as before and for the complex eigenvalues λ = α ± ıβ,
β 6= 0, the Jordan blocks are

Jl(λ) =


C(λ) I2 · · · · · · 0

0 C(λ)
. . .

... 0
...

...
. . . . . .

...
0 · · · · · · C(λ) I2

0 · · · · · · · · · C(λ)



=



α −β 1 0 · · · · · · · · · · · · 0 0
β α 0 1 · · · · · · · · · · · · 0 0
0 0 α −β · · · · · · · · · · · · 0 0
0 0 β α · · · · · · · · · · · · 0 0
...

...
...

...
. . . . . . . . . . . .

...
...

...
...

...
...

. . . . . . . . . . . .
...

...
...

...
...

...
...

... α −β 1 0
...

...
...

...
...

... β α 0 1
0 0 · · · · · · · · · · · · 0 0 α −β
0 0 · · · · · · · · · · · · 0 0 β α



.



184 APPENDIX C. CONCEPTS OF LINEAR ALGEBRA



Bibliography

J. Argyris, G. Faust, M. Haase, and R. Friedrich. An Exploration of Dynam-
ical Systems and Chaos. Springer-Verlag, Berlin, 2015.

L. Arnold. Random Dynamical Systems. Springer-Verlag, Berlin, corrected
second printing edition, 2003.

O. Ashenfelter and D. Card. Time series representations of economic vari-
ables and alternative models of the labour market. Review of Economics
and Statistics, 49:761–782, 1982.

C. Azariadis. Self-fulfilling prophecies. Journal of Economic Theory, 25:
380–396, 1981.

C. Azariadis. Intertemporal Macroeconomics. Blackwell Publishers, Cam-
bridge, Massachusetts, 1993.

C. Azariadis and R. Guesnerie. Sunspots and cycles. Review of Economic
Studies, 53:725–736, 1986.

M. A. Berger. An Introduction to Probability and Stochastic Processes.
Springer–Verlag, New York, 1993.

M. Binder and H. Peseran. Multivariate rational expectations models: A
review of some results. In Handbook of Applied Econometrics: Macroeco-
nomics, pages 139–187. Basil Blackwell, Oxford, 1994.

O. J. Blanchard and C. M. Kahn. The solution of linear difference models
under rational expectations. Econometrica, 48(5):1305–1311, 1980.

L. Brand. A sequence defined by a difference equation. The American Math-
ematical Monthly, 62:489–492, 1955.

P. Cagan. The monetary dynamics of hyperinflation. In M. Friedman, edi-
tor, Studies in the Quatity Theory of Money, pages 23–117. University of
Chicago Press, Chicago, 1956.

185



186 BIBLIOGRAPHY

S. L. Campbell and C. D. Meyer, Jr. Generalized Inverses of Linear Trans-
formations. Dover Books on Advanced Mathematics. Dover Publications,
New York, 1979.

D. Cass and K. Shell. Do sunspots matter? Journal of Political Economy,
91:193–227, 1983.

X. Chen, E. L. Leeper, and C. Leith. US monetary and fiscal policies – conflict
or cooperation? Working Paper 2015–16, Business School – Economics,
University of Glasgow, 2015.

T. Cogley and T. J. Sargent. Drifts and volatilities: Monetary policies and
outcomes in the post WWII US. Review of Economics Dynamics, 8:262–
302, 2005.

F. Colonius and W. Kliemann. Dynamical Systems and Linear Algebra, vol-
ume 158 of Graduate Studies in Mathematics. American Mathematical
Society, Providence, Rhode Island, 2014.

Y. Coudène. Ergodic Theory and Dynamical Systems. Springer–Verlag, Lon-
don, 2016.

P. Diaconis and D. Freedman. Iterated random functions. SIAM Review, 41:
45–76, 1999.

R. Dornbusch. Expectations and exchange rate dynamics. Journal of Political
Economy, 84:1161–76, 1976.

S. N. Elaydi. An Introduction to Difference Equations. Springer, New York,
third edition, 2005.

R. E. A. Farmer. The Macroeconomics of Self-Fulfilling Prophecies. The MIT
Press, Cambridge, Massachusetts, 1993.
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