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1 Density and Distribution Function

1.1 Univariate Density Function

Definition 1. A random variable is a variable whose values are determined

by a probability distribution.

Definition 2. A random variable is a real valued function defined on some

probability space. The random variable is denoted by capital letters whereas

its realizations are denoted by small letters.

Definition 3. The density function of a continuous random variable X is a

nonnegative function f such that :

P(x1 ≤ X ≤ x2) =

∫ x2

x1

f(x)dx.

Remark 1. ∫ ∞
−∞

f(x)dx = 1

The conditional distribution of two events A and B, denoted by P(A|B), is

defined as

P(A|B) =
P(A ∩B)

P(B)

The conditional distribution P(x1 ≤ X ≤ x2|a ≤ X ≤ b) is therefore given

by

P(x1 ≤ X ≤ x2|a ≤ X ≤ b) =
P(x1 ≤ X ≤ x2 and a ≤ X ≤ b)

P(a ≤ X ≤ b)

if [x1, x2] ⊆ [a, b].

Definition 4. The conditional density function is defined as:

f(x|a ≤ X ≤ b) =

{
f(x)∫ b

a f(x)dx
, a ≤ x ≤ b;

0, otherwise.

For any event S with P(X ∈ S) > 0 we have:

f(x|X ∈ S) =

{
f(x)

P(X∈S) , x ∈ S;

0, otherwise.
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1.2 Bivariate random variables

Definition 5. If X and Y are two random variables, then the nonnegative

function f(x, y) is called the joint density function of X and Y if

P(x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2) =

∫ x2

x1

∫ y2

y1

f(x, y)dydx

Remark 2. It holds that
∫∞
−∞

∫∞
−∞ f(x, y)dydx = 1.

Remark 3. The order of the integration can be exchanged.

Example

f(x, y) =

{
1, 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1;

0, otherwise.

P(X > Y ) =
∫ ∫

S
f(x, y)dxdy =

∫ ∫
S

1dxdy = 1
2
.

P(X2 + Y 2) = π
4

Definition 6. The marginal distribution ( marginal density function) is de-

fined as:

P(x1 ≤ X ≤ x2) = P(x1 ≤ X ≤ x2,−∞ ≤ Y ≤ ∞)

f(x) =

∫ ∞
−∞

f(x, y)dy

Definition 7. : Let f(x, y) be the joint density of (X, Y ) and let S be an

event such that P((X, Y ) ∈ S) > 0, then the conditional density is given by

f(x, y|S) =

{
f(x,y)

P((X,Y )∈S) , (x, y) ∈ S;

0, otherwise.

An important special case is given by the event S = {y1 ≤ Y ≤ y2}:

f(x|S) =

∫ y2
y1
f(x, y)dy∫∞

−∞

∫ y2
y1
f(x, y)dy dx

It is also possible to define the conditional density with respect to the event

S = {Y = y}:

f(x|Y = y) =
f(x, y)

f(y)
.
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Figure 1: Cumulative distribution function of the standard normal distribu-

tion

Definition 8. Two random variables are called independent, if and only if

f(x, y) = f(x)f(y)

This amounts to:

P(x1 ≤ X ≤ x2 and y1 ≤ Y ≤ y2) = P(x1 ≤ X ≤ x2)P(y1 ≤ Y ≤ y2)

1.3 Cumulative Distribution Function

Definition 9. The cumulative distribution function F of a random variable

X is defined by

F (x) = P(X < x) =

∫ x

−∞
f(t)dt

Remark 4. F has the following properties:

(i) F is monotonically nondecreasing

(ii) F (−∞) = 0 and F (∞) = 1.

(iii) F is continuous to the left
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Similarly, the n-dimensional cumulative distribution function is defined as

F (x1, x2, . . . , xn) = P(X1 < x1, X2 < x2, . . . , Xn < xn)

If X and Y are two independent random variables, we have:

F (x, y) = P(X < x, Y < y) = P(X < x)P(Y < y) = F (x)F (y)

2 Moments of a Distribution

Definition 10. : Let X be a real continuous random variable with density

f(x), then the expected value or mean of X, EX, is defined as

EX =

∫ ∞
−∞

xf(x)dx,

if the integral exists.

Besides the expected value, there are other statistics which determine the

location of a distribution:

• The mode is given by the maximum of f(x).

• The median is the value m which satisfies: P(X ≤ m) = 1
2
.

A distribution is called positively skewed if mode < median < expected value.

Theorem 1. For any continuous function Φ we have:

EΦ(X) =

∫ ∞
−∞

Φ(x)f(x)dx

EΦ(X, Y ) =

∫ ∞
−∞

∫ ∞
−∞

Φ(x, y)f(x, y)dx dy

This Theorem leads to the following conclusions:

(i) Eα = α for all α ∈ R

(ii) E(αX + βY ) = αEX + βEY

(iii) For two independent random variables X and Y , EX Y = EXEY
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Figure 2: Location of distribution with positive skewness
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In order to characterize the distribution completely it is necessary to consider

moments of higher order. The k-th moment around zero is defined as EXk;

the k-th moment around the mean E(X − EX)k

The second moment around the mean is called the variance. It is the second

most important quantity after the mean to characterize a distribution. It

measures the spread of the variable around its mean. The variance of X is

defined as:

VX = E(X − EX)2 = EX2 − (EX)2

The variance has the following properties:

VX ≥ 0

VX = 0⇐⇒ X = EX constant

V(αX + β) = α2VX

Instead of the variance one often considers the standard deviation:

σX =
√
VX.

3 Relation between Random Variables

The relation between two random variables can be measured by their covari-

ance:

Definition 11. : The covariance between two random variables X and Y is

defined as:

cov(X, Y ) = E((X − EX)(Y − EY ))

= E(XY )− EXEY

= E((X − EX)Y ) = E(X(Y − EY ))

cov > 0, if X − EX and Y − EY show a tendency to have the same sign;

cov < 0, if X −EX und Y −EY show a tendency to have the opposite sign.

Theorem 2. If X and Y are two independent random variables: cov(X, Y ) =

0.
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However, the reverse is not true! Although cov(X, Y ) = 0, the random

variables X and Y may still dependent.

Theorem 3. V(X ± Y ) = VX + VY ± 2cov(X, Y )

Theorem 4. If Xi, i = 1, . . . , n, are pairwise independent, we have:

V

(
n∑
j=1

Xj

)
=

n∑
j=1

VXj

This Theorem remains correct if we replace the condition of independence

by cov(Xi, Xj) = 0, i 6= j.

One disadvantage of the covariance as a measure of relation between two

random variables is its dependence on the units of measurement. A mea-

sure which is free from the units of measurement is given by the correlation

coefficient.

Definition 12. : The correlation coefficient between two random variables

X and Y is defined as:

ρX,Y =
cov(X, Y )

σXσY

where σX and σY denote the corresponding standard deviations.

Theorem 5. The correlation between αX and βY , α, β ∈ R, is equal to the

correlation between X and Y , i.e. ραX,βY = ρX,Y

Theorem 6. |ρX,Y | ≤ 1

Proof. For all λ ∈ R we have: E((X −EX)−λ(Y −EY ))2 = V X +λ2V Y −
2λcov(X, Y ) ≥ 0. Setting λ equal to cov(X,Y )

V Y
, we get: VX + (cov(X,Y ))2

VY −
2 (cov(X,Y ))2

VY = VX − (cov(X,Y ))2

VY ≥ 0. This implies: ρ2X,Y = (cov(X,Y ))2

VXVY ≤ 1.

We say that

• X and Y are uncorrelated if ρ = 0;

• X and Y are positively correlated if ρ > 0;

• X and Y are negatively correlated if ρ < 0.
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4 Forecast

We are looking for the best linear predictor for Y in the class of all linear

functions of X. By “best predictor” we mean to minimize the mean quadratic

forecast error. Thus we want to solve the following minimization problem:

S(α, β) = E(Y − α− βX)2 −→ min
α,β

.

S is called the mean squared error (MSE) or means squared prediction error.

Differentiating the above expression with respect to α and β leads to the

following first order condition for the minimum:

∂S

∂α
= 2α− 2EY + 2βEX = 0

= α− EY + βEX = 0

∂S

∂β
= 2βEX2 + 2αEX − 2EXY = 0

= βEX2 + αEX − EXY = 0

These equations are also called the normal equations because they imply

that the expected prediction error is zero and that the prediction error is

orthogonal to X.

The solution of this equation system leads to:

β̂ =
cov(X, Y )

VX

α̂ = EY − β̂EX = EY − cov(X, Y )

VX
EX

Theorem 7. The best linear predictor of Y given X in the MSE sense is

given by α̂ + β̂X.

In the case of the least-squares (LS) estimator, we replace cov(X, Y ), VX and

the expected values by their sample counterparts. In this sense, we can speak

of the LS-estimator as a natural candidate for an estimator. The forecast

function is then Ŷ = α̂ + β̂X. The LS-residual is defined by U = Y − Ŷ .
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The following relations hold:

VŶ = β̂2VX =
cov(X, Y )2

(VX)2
VX =

cov(X, Y )2

VXVY
VY = ρ2X,YVY

VU = V(Y − α̂− β̂X) = V Y +
cov(X, Y )2

(VX)2
VX − 2

cov(X, Y )

VX
cov(X, Y )

= (1− ρ2X,Y )VY

cov(Ŷ , U) = cov(Ŷ , Y − Ŷ ) = cov(Ŷ , Y )− VŶ = β̂cov(X, Y )− V̂ Ŷ = 0

The variance of Y can be decomposed as follows:

VY = ρ2X,YVY + (1− ρ2X,Y )VY = VŶ + VU

The correlation coefficient is thus a measure of the linear dependence of Y and

X. ρ can be small even if the two random variables are non-linearly related.

For example, let X be a random variable with the properties EX = 0 and

EX3 = 0, and define Y as Y = X2. In this case cov(X, Y ) = EXY = EX3 =

0. Therefore ρX,Y = 0 although Y and X are perfectly related.

5 The Conditional Expectation

As conditional distributions are again ordinary distributions, it is possible to

compute their expected values and their variance.

Definition 13. : Let (X, Y ) be a bivariate continuous random variable with

conditional density f(y|x) and let φ be an arbitrary function, then the con-

ditional expectation of φ(X, Y ) given X is defined as

E(φ(X, Y )|X) = EY |Xφ(X, Y ) =

∫
φ(x, y)f(y|X)dy.

Remark 5. E(φ(X, Y )|X) = EY |Xφ(X, Y ) is just a function of X which can

be evaluated at particular values of X. E(φ(X, Y )|X) = EY |Xφ(X, Y ) can

thus be seen as a random variable in X.

Theorem 8. Eφ(X, Y ) = EXEY |Xφ(X, Y )
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Proof.

Eφ(X, Y ) =

∫ ∫
φ(x, y)f(x, y)dxdy =

∫ ∫
φ(x, y)f(y|x)f(x)dxdy

=

∫ [∫
φ(x, y)f(y|x)dy

]
f(x)dx =

∫
EY |Xφ(X, Y )f(x)dx

= EXEY |Xφ(X, Y )

Remark 6. This Theorem is called the Law of Iterated Expectations and

plays a central role in the theory of rational expectations.

Theorem 9. Vφ(X, Y ) = EXVY |Xφ(X, Y ) + VXEY |Xφ(X, Y )

Proof. We have:

VY |Xφ(X, Y ) = EY |Xφ2(X, Y )− (EY |Xφ(X, Y ))2.

In addition:

VXEY |Xφ(X, Y ) = EX(EY |Xφ(X, Y ))2 − (EXEY |Xφ(X, Y )))2

= EX(EY |Xφ(X, Y ))2 − (Eφ(X, Y ))2.

Combining the two equations leads to:

EXVY |Xφ(X, Y )+VXEY |Xφ(X, Y ) = Eφ2(X, Y )−(Eφ(X, Y ))2 = V (φ(X, Y )

Sometimes it is easier to compute the unconditional variance or the uncon-

ditional expectation in this way.

We are again looking for the best predictor, but we do not restrict ourselves

to the class of linear predictors and consider also non-linear predictors. The

minimization problem then becomes:

E(Y − φ(X))2 min
φ

Theorem 10. The best predictor of Y given X is the conditional expectation

E(Y |X).
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Proof.

E(Y − φ(X))2 = E{(Y − E(Y |X) + (E(Y |X)− φ(X))}2

= E(Y − E(Y |X))2 + E(E(Y |X)− φ(X))2

+ 2E(Y − E(Y |X))(E(Y |X)− φ(X))

On the other hand, the Law of Iterated Expectations implies:

E(Y − E(Y |X))(E(Y |X)− φ(X)) =

EXEY |X ((Y − E(Y |X))(E(Y |X)− φ(X))) = 0

We must therefore choose φ(X) = E(Y |X).

6 The Normal Distribution

Univariate Normal Distribution

The normal distribution plays a pivotal role in probability theory and statis-

tics. Its density is given by:

f(x) =
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

The normal distribution is therefore characterized by the two parameters µ

and σ and we write X ∼ N(µ, σ2).

Theorem 11. If X ∼ N(µ, σ2), then EX = µ and VX = σ2.

The density of the normal distribution is symmetric around µ and has the

typical shape of a bell. Because f(µ) = 1
σ
√
2π

, f(x) becomes flatter when σ

is increasing.

If X ∼ N(µ, σ2), then Z = X−µ
σ
∼ N(0, 1). N(0, 1) is called the standard

normal distribution. It has a mean of zero and a variance of one.

Theorem 12. Let X ∼ N(µ, σ2) and Y = a+ bX, then Y ∼ N(a+ bµ, b2σ2).
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Bivariate Normal Distribution

Definition 14. : The density of the bivariate normal distribution is

f(x, y) =
1

2πσXσY
√

1− ρ2

exp

{
− 1

2(1− ρ2)

[(
x− µX
σX

)2

+

(
y − µY
σY

)2
]}
−2ρ

(
x− µX
σX

)(
y − µY
σY

)
.

Theorem 13. If (X, Y ) follow a bivariate normal distribution, then the fol-

lowing is true:

(i) The marginal densities f(x) and f(y) are univariate normal distribu-

tions.

(ii) The conditional distributions f(x|y) and f(y|x) are univariate normal

distributions;

(iii) EX = µX , VX = σ2
X , EY = µY , VY = σ2

Y .

(iv) The correlation coefficient between X and Y , ρX,Y , is equal to ρX,Y = ρ.

(v) E(Y |X) = µY + ρ σY
σX

(X − µX) and V(Y |X) = σ2
Y (1− ρ2).

The above properties characterize the normal distribution. It is the only

distribution with these properties.

Theorem 14. If (X, Y ) is distributed as a bivariate normal distribution,

then aX + bY is also normally distributed.

Remark 7. The reverse implication is not true, even when X and Y are

each normally distributed.

Theorem 15. Let {Xt}, t = 1, . . . , T , be pairwise independently distributed

normal random variables with distribution N(µ, σ2) then

XT =
1

T

T∑
t=1

Xt ∼ N

(
µ,
σ2

T

)
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Theorem 16. If X and Y are bivariate normally distributed with cov(X, Y ) =

0 then X and Y are independent.

The above considerations imply that the best predictor of Y givenX, E(Y |X)

is the linear predictor.

IfX and Y are arbitrary random variables then there exists a random variable

Z such that

Y = µY + ρ
σY
σX

(X − µX) + σYZ

with EZ = 0, VZ = 1 − ρ2 and cov(X,Z) = 0. If X and Y are normally

distributed then Z is also normally distributed. Because E(Z|X) = EZ = 0

and V(Z|X) = VZ = 1− ρ2, we have

E(Y |X) = µY + ρ
σY
σX

(X − µX).

Multivariate Normal Distribution

Let X = (X1, . . . , Xn)′ be a n-vector such that each element Xi is a random

variable. In addition let EX = (µ1, . . . , µn) and VX = Σ with

Σ =


σ11 σ12 . . . σ1n

σ21 σ22 . . .
...

...
...

. . .
...

σn1 σn2 . . . σnn


where σij = cov(Xi, Xj).

Definition 15. : A n-dimensional random variable X is multivariate nor-

mally distributed with mean µ and variance-covariance matrix Σ, X ∼
N(µ,Σ) if its density is:

f(x) = (2π)−n/2(det Σ)−1/2 exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
Theorem 17. Let X ∼ N(µ,Σ) and X = (Y ′, Z ′)′, where Y and Z are of

dimensions h and k with n = h+ k with corresponding partition of Σ

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,
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where Σ11 = VY , Σ22 = VZ, Σ12 = Σ′21 = cov(Y, Z) = E(Y −EY )′(Z−EZ),

then the subvectors Y and Z are again normally distributed. The condi-

tional distribution of Y given Z (and similarly given X) are also normally

distributed with

E(Y |Z) = EY + Σ12Σ
−1
22 (Z − EZ),

V(Y |Z) = Σ11 − Σ12Σ
−1
22 Σ21.

Theorem 18. Let X ∼ N(µ,Σ) and A a (m×n) matrix with m ≤ n and m

linearly independent rows then we have

AX ∼ N(Aµ,AΣA′)

Theorem 19. Let X ∼ N(µ,Σ) and Y and Z be defined as above. If Σ12 = 0,

then Y and Z are independent. In this case f(x) = f(y)f(z) where f(y) and

f(z) are the corresponding multivariate normal densities of Y and Z.

7 Foundations of Probability Theory

Let Ω be an arbitrary set with elements ω. In probability theory Ω consists

of all possible outcomes from an experiment or observation.

Definition 16. Let A be a collection of subsets of Ω, then A is called a

σ-algebra if and only if the following conditions hold:

(i) A is non-empty. There is at least one A ⊆ Ω in A.

(ii) A is closed under complementation. A ∈ A implies Ω \ A ∈ A.

(iii) A is closed under countable unions. If A1, A2, . . . ∈ A then
⋃
nAn ∈ A.

Corollary 20. The above conditions imply that ∅ ∈ A and Ω ∈ A.

Definition 17. A probability space is triplet (Ω,A,P) such that

(i) Ω is an arbitrary nonempty set, called the sample space.
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(ii) A is a σ-algebra with respect to Ω. The elements A ∈ A are called

events.

(iii) P : A −→ [0, 1] assigns to each event a probability, i.e. a number in

[0, 1], such that P(∅) = 0 and P(Ω) = 1.

(iv) For every countable collection {Ai}i=1,2,... of pairwise disjoint sets in A,

P (
⋃∞
i=1Ai) =

∑∞
i=1 P(Ai)

Definition 18. Given a probability space (Ω,A,P) a real valued random

variable X is function from Ω to R, i. e. X : Ω −→ R, such that X−1(B) =

{ω : X(ω) ∈ B} ∈ A for every B ∈ B, the Borel σ-algebra of real numbers.

8 Stochastic Processes

Definition 19. A stochastic process {Xt} is a family of random variables

indexed by t ∈ T and defined on some probability space (Ω,F ,P).

Most of the time the mentioning of the probability space is suppressed. T is

often interpreted as a time index. In this case T = N respectively Z or R.

In the following we consider only discrete stochastic processes with infinite

past and future, i.e. we take T = Z.

Definition 20. If {Xt} is a stochastic process with VXt < ∞ for all t ∈ Z
then the function γX(t, s) with t, s ∈ Z is called the autocovariance function

of {Xt} which is defined as follows:

γX(t, s) = cov(Xt, Xs) = E [(Xt − EXt)(Xs − EXs)] = EXtXs − EXtEXs.

8.1 Stationarity

Definition 21. A stochastic process {Xt} is called stationary if for all inte-

gers r, s and t the following properties hold:

(i) EXt = µ constant;

(ii) VXt <∞;
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(iii) γX(t, s) = γX(t+ r, s+ r).

Remark 8. Processes with these properties are also called weakly stationary,

stationary in the wide sense, covariance stationary, or stationary of second

order.

Remark 9. If t = s, γX(t, s) = γX(t, t) = VXt. If {Xt} is stationary then

γX(t, t) = γX(0) = VXt is the (unconditional) variance of the process.

Remark 10. If {Xt} is stationary then the autocovariance function for r =

−s is given by:

γX(t, s) = γX(t− s, 0).

The covariance γX(t, s) does therefore not depend on the time periods t and

s, but only on the time difference t − s. For stationary processes, we there-

fore consider the covariance function only as a function in one argument.

We denote the covariance function in this case by γX(h), h ∈ Z. Because

γX(t, s) = γX(s, t), for all t and s, we get in addition

γX(h) = γX(−h) for all integers h.

We therefore consider the covariance function (autocorrelation function) only

for nonnegative integers h = 0, 1, 2, . . . whereby h is called the order or lag.

If one considers instead of the covariances the correlations of a stationary

process, one obtains the autocorrelation function (ACF) defined as:

ρX(h) =
γX(h)

γX(0)
= corr(Xt+h, Xt) for all integers h.

In many applications, knowledge of the first two moments is sufficient to

characterize the properties of the process. However, there are situation where

it is necessary to consider the whole distribution. This leads to to the concept

of strong stationarity.

Definition 22. A stochastic process is called strictly (strongly) stationary

if and only if the joint distribution of (Xt1 , . . . , Xtn) and (Xt1+h, . . . , Xtn+h)

is the same for all h ∈ Z and all (t1, . . . , tn) ∈ T n, n = 1, 2, . . .

17



An equivalent definition is given by:

Definition 23. A stochastic process is called strictly (strongly) stationary

if and only if, for all integers h and n ≥ 1, the distributions of (X1, . . . , Xn)

and (X1+h, . . . , Xn+h) are identical.

Remark 11. If {Xt} is strictly stationary then Xt has the same distribution

for all t (n=1). The above definition applied to n = 2 implies that the

joint distribution of Xt+h and Xt is independent of t. Thus the covariances

dependent on h only. A strictly stationary process with finite second moments

is therefore also stationary.

The converse is, however, not true as the following example shows:

Xt ∼

exponential with mean 1 (i.e. f(x) = e−x), t uneven;

N(1,1), t even;

such that the Xt’s are independent of each other. In this case:

• EXt = 1

• γX(0) = 1 und γX(h) = 0 für h 6= 0

The process is therefore stationary, but clearly not strictly stationary as the

distribution changes according to whether t is even or uneven.

Definition 24. A stochastic process {Xt} is called a Gaussian process if and

only if all finite-dimensional distributions of {Xt} are multivariate normal.

Remark 12. A stationary Gaussian process is also strictly stationary. For

all n, h, t1, . . . , tn, (Xt1 , . . . , Xtn) and (Xt1+h, . . . , Xtn+h) have the same mean

and the same covariance matrix.

8.2 White Noise

The simplest process is called a White noise process or shortly White noise.

It is defined as follows:
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Definition 25. The stochastic process {Zt} is called White noise (a White

Noise process) if and only if {Zt} is stationary and

• EZt = 0

• γZ(h) =

σ2 h = 0;

0 h 6= 0.

Such processes are denoted by Zt ∼WN(0, σ2).

White noise processes are therefore processes with no autocorrelation in the

time dimension, i.e. the autocorrelation function is always equal to zero,

except for h = 0 where it is equal to one. As the autocorrelation function has

no particular structure, it is impossible to conjecture the future development

of the process from past observations by considering the first two moments

only. A White noise process has therefore no memory.

If {Zt} is not only uncorrelated but also independently and identically dis-

tributed we write Zt ∼ IID(0, σ2). Thereby IID stands for independently

and identically distributed. If in addition Zt normally distributed, we write

Zt ∼ IIN(0, σ2). A IID(0, σ2) process is therefore always white noise. The

converse, however, is not true.

8.3 Martingale

The sequence of σ-algebras Ft = {Xt, Xt−1, . . . } is called the information

set.1

Definition 26. A martingale is stochastic process {Mt} with the following

properties:

• E|Mt| <∞

• EtMt+h = E(Mt+h|Ft) = Mt for all h ≥ 0.

1More precisely, it is the smallest σ-algebra such that all Xt−j , j = 0, 1, 2, . . . are

measurable random variables. The sequence {Ft} is then called the natural filtration.
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The classical example of a martingale is the random walk with IID incre-

ments, i.e. Xt = Xt−1 + Zt with Zt ∼ IID(0, σ2).

Definition 27. {Xt} is called a martingale difference if and only if EtXt+1 =

E(Xt+1|Ft) = 0.

A martingale difference is thus a process for which the past provides no infor-

mation about the future evolution. A martingale difference can be considered

as something between a White noise and an IID process. An important ex-

ample of a martingale difference is given by the forecast errors:

εt+1 = Xt+1 − EtXt+1.

Martingale differences share the following properties:

• The Law of Iterated Expectations implies (see Theorem 8):

EXt = E(E(Xt+1|Ft)) = 0.

• The same argument implies that:

cov(Xt, Xt+h) = E(XtXt+h) = 0 for h 6= 0.

These properties do not imply that martingale differences are stationary. In

particular, it can be the case that their variances depend on t. Moreover,

martingale differences are not independently distributed as the following ex-

ample demonstrates.

Example: Xt = Xt−1
εt
εt−2

with X1 = ε1, ε0 = 1 and εt ∼ IID(0, σ2
t ). One

can immediately verify that X2 = X1
ε2
ε0

= ε2ε1 and that therefore Xt =

εtεt−1.

Moreover it is possible to infer {εt} perfectly from {Xt} because ε2 = X2

X1
ε0 =

X2

X1
respectively ε3 = X3

X2
ε1 = X2

ε2ε1
ε1 = X3

ε2
or more generally εt = Xt

εt−1
.

We therefore get: E(Xt+1|Ft) = E
(
Xtεt+1

εt−1
|Ft
)

= Xt

εt−1
E(εt+1|Ft) = 0. {Xt}

is therefore a martingale difference, despite the fact that there is an exact

dependence between Xt and its past.
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9 Stochastic Convergence

In probability theory it is often necessary to compute the limit of a sequence

of random variables. There are different concepts for convergence. The most

important ones are convergence in probability, convergence in quadratic mean

and convergence in distribution.

Definition 28. A sequence of random variables {Xt} converges in probabil-

ity to a random variable X if and only if for all ε > 0

lim
t→∞

P[|Xt −X| > ε] = 0.

This is denoted by Xt
p−→ X.

Theorem 21 (Continuous Mapping Theorem). If {Xt} is a sequence of

random variables with realizations in Rn which converges in probability to

a random variable X then f(Xt)
p−→ f(X) for any continuous function f :

Rn −→ Rm.

Definition 29. A sequence of random variables {Xt} converges in quadratic

mean ( mean-square convergence) to a random variable X if and only if

lim
t→∞

E[|Xt −X|2] = 0.

This is denoted by Xt
m.s.−−−→ X.

The following inequality, the so-called Chebychev’s Inequality, is a very useful

tool.

Theorem 22 (Chebychev’s Inequality). If E|X|r < ∞ for r ≥ 0 then for

any ε > 0 we have

P[|X| ≥ ε] ≤ ε−rE|X|r.

Chebychev’s Inequality immediately implies the following theorem.

Theorem 23. If Xt
m.s.−−−→ X then Xt

p−→ X.

The reverse is not true. In addition we have:
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Theorem 24. If EXt −→ µ and VXt −→ 0 then Xt
m.s.−−−→ X and therefore

Xt
p−→ X.

Lemma 1. Let {Xt} be a stochastic process with the property that supt E|Xt| <
∞ and let {ψj : j ∈ Z} be any sequence of real numbers such that

∑∞
j=−∞ |ψj| <

∞ then the infinite sum

Ψ(L)Xt =
∞∑

j=−∞

ψjXt−j

converges absolutely in probability. If in addition supt E|Xt|2 < ∞ then the

sum also converges in quadratic mean to the same limit.

Definition 30. A sequence of n-dimensional random variables {Xt} with

corresponding distribution functions {FXt} converges in distribution if there

exists a n-dimensional random variable X with distribution function FX such

that

lim
t→∞

FXt(x) = FX(x) für alle x ∈ C,

where C denotes the set of points for which FX(x) is continuous. This is

denoted by Xt
d−→ X.

Convergence in distribution means that we can approximate, for large t, the

distribution of Xt by the distribution of X. We also have a Continuous

Mapping Theorem for convergence in distribution. In addition we have:

Theorem 25. If Xt
p−→ X then Xt

d−→ X.

The reverse is not true. If the limit, however, is not a random variable

but a constant n-dimensional vector x, convergence in distribution implies

convergence in probability, i.e. Xt
d−→ x implies Xt

p−→ x. A further useful

result is:

Theorem 26. If {Xt} and {Yt} are two sequences of n-dimensional random

variables which converge in distribution to X, respectively to a constant c,

then we have:

(i) Xt + Yt
d−−−−→ X + c,
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(ii) Y ′tXt
d−−−−→ c′X.

In many instances the limit is given by the normal distribution. In this case

one speaks of asymptotic normality.

Definition 31. A sequence of random variables {Xt} with “means” µt and

“variances” σ2
t > 0 is called asymptotically normal if and only if

σ−1t (Xt − µt)
d−→ X ∼ N(0, 1).

The definition does not require that µt = EXt nor that σ2
t = V(Xt). In

particular, asymptotic normality is achieved if Xt is an identically and inde-

pendently distributed sequence of random variables with constant mean and

variance. In this case the so-called Central Limit Theorem holds.

Theorem 27 (Central Limit Theorem). If {Xt} is a sequence of identically

and independently distributed random variables with constant mean µ and

constant variance σ2 then we have

√
T
XT − µ

σ

d−−−−→ N(0, 1),

where XT = T−1
∑T

t=1Xt.

The assumption of identically distributed random variables can be relaxed

in several dimensions which leads to a bunch of Central Limit Theorems.
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