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Foreword

These lecture notes are supposed to summarize the main results concerning

matrix algebra as they are used in econometrics and economics. For a deeper

discussion of the material, the interested reader should consult the references

listed at the end.

1 Definitions

A matrix is a rectangular array of numbers. Here we consider only real

numbers. If the matrix has n rows and m columns, we say that the matrix

is of dimension (n×m). We denote matrices by capital bold letters:

A = (A)ij = (aij) =


a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...

an1 an2 . . . anm


The numbers aij are called the elements of the matrix.

A (n × 1) matrix is a column vector with n elements. Similarly, a (1 ×m)

matrix is a row vector with m elements. We denote vectors by bold letters.

a =


a1

a2
...

an

 b = (b1, b2, . . . , bm).

A (1× 1) matrix is a scalar which is denoted by an italic letter.

The null matrix (O) is a matrix all elements equal to zero, i.e. aij = 0 for

all i = 1, . . . , n and j = 1, . . . ,m.

A quadratic matrix is a matrix with the same number of columns and rows,

i.e. n = m.

A symmetric matrix is a quadratic matrix such that aij = aji for all i =

1, . . . , n and j = 1, . . . ,m.

A diagonal matrix is a quadratic matrix such that the off-diagonal elements
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are all equal to zero, i.e. aij = 0 for i 6= j.

The identity matrix is a diagonal matrix with all diagonal elements equal to

one. The identity matrix is denoted by I or In.

A quadratic matrix is said to be upper triangular whenever aij = 0 for i > j

and lower triangular whenever aij = 0 for i < j.

Two vectors a and b are said to be linearly dependent if there exists scalars

α and β both not equal to zero such αa + βb = 0. Otherwise they are said

to be linearly independent.

2 Matrix operations

Equality

Two matrices or two vectors are equal if they have the same dimension and

if their respective elements are all equal:

A = B ⇐⇒ aij = bij for all i and j

Transpose

Definition 1. The matrix B is called the transpose of matrix A if and only

if

bij = aji for all i and j.

The matrix B is denoted by A′ or AT .

Taking the transpose of some matrix is equivalent to interchanging rows and

columns. If A has dimension (n×m) then B has dimension (m× n).

Taking the transpose of a column vector gives a row vector and vice versa.

In general we mean vectors to be column vectors.

Remark 1. For any matrix A, (A′)′ = A. For symmetric matrices A′ = A.

Addition and Subtraction

The addition and subtraction of matrices is only defined for matrices with

the same dimension.
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Definition 2. The sum (difference) between two matrices A and B of the

same dimension is given by the sum (difference) of its elements, i.e.

C = A + B ⇐⇒ cij = aij + bij for all i and j

We have the following calculation rules:

A + O = A addition of null matrix

A−B = A + (−B)

A + B = B + A kommutativity

(A + B) + C = A + (B + C) associativity

(A + B)′ = A′ + B′

Product

Definition 3. The inner product (dot product, scalar product) of two vectors

a and b of the same dimension (n× 1) is a scalar (real number) defined as:

a′b = b′a = a1b1 + a2b2 + · · ·+ anbn =
n∑

i=1

aibi.

The product of a scalar c and a matrix A is a matrix B = cA with bij = caij.

Note that cA = Ac when c is a scalar.

Definition 4. The product of two matrices A and B with dimensions (n×k)

and (k ×m), respectively, is given by the matrix C with dimension (n×m)

such that

C = A B ⇐⇒ cij =
k∑

s=1

aisbsj for all i and j

Remark 2. The matrix product is only defined if the number of columns of

the first matrix is equal to the number of rows of the second matrix. Thus, al-

though A B may be defined, B A is only defined if n = m. Thus for quadratic

matrices both A B and B A are defined.

Remark 3. The product of two matrices is in general not commutative, i.e.

A B 6= B A.
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Remark 4. The product A B may also be defined as

cij = (C)ij = a′i•b•j

where a′i• denotes the i-th row of A and b•j the j-th column of B.

Under the assumption that dimensions agree, we have the following calcula-

tion rules:

AI = A, IA = A

AO = O, OA = O

(AB)C = A(BC) = ABC associativity

A(B + C) = AB + AC distributivity

(B + C)A = BA + CA distributivity

c(A + B) = cA + cB distributivity with scalar c

(AB)′ = B′A′ reverse ordering after transpose

(ABC)′ = C′B′A′

3 Rank of a Matrix

The column rank of a matrix is the maximal number of linearly indepen-

dent columns. The row rank of a matrix is the maximal number of linearly

independent rows. A matrix is said to have full column (row) rank if the

column rank (row rank) equals the number of columns (rows). For quadratic

matrices the column rank is always equal to the row rank. In this case we

just speak of the rank of a matrix. The rank of a quadratic matrix is denoted

by rank(A).

For quadratic matrices we have:

rank(AB) ≤ min{rank(A), rank(B)}

rank(A′) = rank(A)

rank(A) = rank(AA′) = rank(A′A)
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4 Special Functions of Quadratic Matrices

In this section only quadratic (n×n) matrices with dimensions are considered.

4.1 Trace of a Matrix

Definition 5. The trace of a matrix A, denoted by tr(A), is the sum of its

diagonal elements:

tr(A) =
n∑

i=1

aii

The following calculation rules hold:

tr(cA) = c tr(A)

tr(A′) = tr(A)

tr(A + B) = tr(A) + tr(B)

tr(AB) = tr(BA)

tr(ABC) = tr(BCA) = tr(CAB)

4.2 Determinant

The determinant can be computed according to the following formula:

|A| =
n∑

i=1

aij(−1)i+j|Aij| for some arbitrary j

The determinant, computed as above, is said to be developed according to

the j-th column. The term (−1)i+j|Aij| is called the cofactor of the element

aij. Thereby Aij is a matrix of dimension ((n−1)×(n−1)) which is obtained

by deleting the i-th row and the j-th column.
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If at least two columns (rows) are linearly dependent, the determinant is

equal to zero and the inverse of A does not exist. The matrix is called

singular in this case. If the matrix is nonsingular then all columns (rows)

are linearly independent. If a column or a row has just zeros as its elements,

the determinant is equal to zero.

If two columns (rows) are interchanged, the determinant changes its sign.

For n = 2 and n = 3, the determinant is given by a tractable formula:

n = 2 : |A| = a11a22 − a12a21

n = 3 : |A| = a11

∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣− a21
∣∣∣∣∣a12 a13

a32 a33

∣∣∣∣∣+ a31

∣∣∣∣∣a12 a13

a22 a23

∣∣∣∣∣
= a11a22a33 − a11a23a32 − a21a12a33

+ a21a13a32 + a31a12a23 − a31a13a22

Calculation rules for the determinant are:

|A′| = |A|

|AB| = |A|·|B|

|cA| = cn|A|

4.3 Inverse of a Matrix

If A is a quadratic matrix, there may exist a matrix B with property AB =

BA = I. If such a matrix exists, it is called the inverse of A and is denoted

by A−1. The inverse of a matrix can be computed as follows

A−1 =
1

|A|


(−1)1+1|A11| (−1)2+1|A21| . . . (−1)n+1|An1|
(−1)1+2|A12| (−1)2+2|A22| . . . (−1)n+2|An2|

...
...

. . .
...

(−1)1+n|A1n| (−1)2+n|A2n| . . . (−1)n+n|Ann|


where Aij is the matrix of dimension (n− 1)× (n− 1) obtained from A by

deleting the i-th row and the j-th column.

7



 

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

=

nnnjn

iniji

nj

ij

aaa

aaa

aaa

��

���

��

���

��

1

1

1111

A

The term (−1)i+j|Aij| is called the cofactor of aij.

For n = 2, the inverse is given by

A−1 =
1

a11a22 − a12a21

(
a22 −a12
−a21 a11

)
.

We have the following calculation rules if both A−1 and B−1 exist:(
A−1

)−1
= A

(AB)−1 = B−1A−1 order reversed

(A′)
−1

=
(
A−1

)′
|A−1| = |A|−1

5 Systems of Equations

Consider the following system of n equations in m unknowns x1, . . . , xm:

a11x1 + a12x2 + · · ·+ a1mxm = b1

a21x1 + a22x2 + · · ·+ a2mxm = b2

. . .

an1x1 + an2x2 + · · ·+ anmxm = bn

If we collect the unknowns into a vector x = (x1, . . . , xm)′, the coefficients

b1, . . . , bm in to a vector b, and the coefficients (aij) into a matrix A, we can
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rewrite the equation system compactly in matrix form as follows:
a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...

an1 an2 . . . anm


︸ ︷︷ ︸

A


x1

x2
...

xm


︸ ︷︷ ︸

x

=


b1

b2
...

bn


︸ ︷︷ ︸

b

A x = b

This equation system has a unique solution if n = m, i.e. if A is a quadratic

matrix, and A is nonsingular, i.e. A−1 exists. The solution is then given by

x = A−1b

Remark 5. To achieve numerical accuracy it is preferable not to compute

the inverse explicitly. There are efficient numerical algorithms which can

solve the equation system without computing the inverse.

6 Eigenvalue, Eigenvector and Spectral De-

composition

In this section we only consider quadratic matrices of dimension n× n.

Eigenvalue and Eigenvector

A scalar λ is said to be an eigenvalue for the matrix A if there exists a vector

x 6= 0 such

A x = λx

The vector x is called an eigenvector corresponding to λ. If x is an eigenvector

then αx, α 6= 0, is also an eigenvector. Eigenvectors are therefore not unique.

It is therefore sometimes useful to normalize the length of the eigenvectors

to one, i.e. to chose the eigenvector such that x′x = 1.
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Characteristic equation

In order to find the eigenvalues and eigenvectors of a matrix, one has to solve

the equation system:

A x = λx = λI x ⇐⇒ (A− λ I)x = 0

This equation system has a nontrivial solution, x 6= 0, if and only if the

matrix (A − λ I) is singular, or equivalently if and only if the determinant

of (A − λ I) is equal to zero. This leads to an equation in the unknown

parameter λ:

|A− λ I| = 0.

This equation is called the characteristic equation of the matrix A and corre-

sponds to a polynomial equation of order n. The n solutions of this equation

(roots) are the eigenvalues of the matrix. The solutions may be complex

numbers. Some solutions may appear several times.

Eigenvectors corresponding to some eigenvalue λ can be obtained from the

equation (A− λ I)x = 0.

We have the following important relations:

tr(A) =
n∑

i=1

λi and |A| =
n∏

i=1

λi

Eigenvalues and eigenvectors of symmetric matrices

If A is a symmetric matrix, all eigenvalues are real and there exist n linearly

independent eigenvectors x1, . . . ,xn with the properties x′ixj = 0 for i 6= j

and x′ixi = 1, i.e the eigenvectors are orthogonal to each other and of length

one. If we collect of the eigenvectors into an (n×n) matrix X = (x1, . . . ,xn),

we can write

C′C = CC′ = I.

If we collect all the eigenvalues into a diagonal matrix Λ,

Λ =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

 ,
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we can diagonalize the matrix A as follows:

C′AC = C′CΛ = IΛ = Λ.

This implies that we can decompose A into the sum of n matrices as follows:

A = CΛC′ =
n∑

i=1

λixix
′
i

where the matrices xix
′
i have all rank one. The above decomposition is called

the spectral decomposition or eigenvalue decomposition of A.

The inverse of the matrix A is now easily calculated by

A−1 = CΛ−1C′ =
n∑

i=1

1

λi
xix

′
i.

as C−1 = C′.

Remark 6. Note that beside symmetric matrices many other matrices, but

not all matrices, are also diagonalizable.

7 Quadratic Forms

For a vector x ∈ Rn and a quadratic matrix A of dimension (n × n) the

scalar function

f(x) = x′Ax =
n∑

j=1

n∑
i=1

xixjaij = x′Ax

is called a quadratic form.

The quadratic form x′Ax and therefore the matrix A is called positive (neg-

ative) definite, if and only if

x′Ax > 0(< 0) for all x 6= 0.

The property that A is positive definite implies that

λi > 0 for all i all eigenvalues are positive

|A| > 0 the determinant is positive

A−1 exists

tr(A) > 0
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The first property can serve as an alternative definition for a positive definite

matrix.

The quadratic form x′Ax and therefore the matrix A is called nonnegative

definite or positive semi-definite, if and only if

x′Ax ≥ 0 for all x.

For nonnegative definite matrices we have:

λi ≥ 0 for all i

|A| ≥ 0 the determinant is nonnegative

tr(A) ≥ 0

The first property can serve as an alternative definition for a nonnegative

definite matrix.

Theorem 1. If the matrix A of dimension (n ×m), n > m, has full rank

then A′A is positive definite and AA′ is nonnegative definite.

8 Partitioned Matrices

Consider a quadratic matrix P of dimensions ((p + q) × (r + s)) which is

partitioned into the (p × r) matrix P11, the (p × s) matrix P12, the (q × r)
matrix P21 and the (q × s) matrix P22:

P =

(
P11 P12

P21 P22

)
Assuming that dimensions in the involved multiplications agree, two parti-

tioned matrices are mulitplied as(
P11 P12

P21 P22

)(
Q11 Q12

Q21 Q22

)
=

(
P11Q11 + P12Q21 P11Q12 + P12Q22

P21Q11 + P22Q21 P21Q12 + P22Q22

)

Assuming that P−111 exists, the determinant of a partitioned matrix is∣∣∣∣∣P11 P12

P21 P22

∣∣∣∣∣ = |P11| · |P22 −P21P
−1
11 P12|
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and the inverse is(
P11 P12

P21 P22

)−1
=

(
P−111 + P−111 P12F

−1P21P
−1
11 −P−111 P12F

−1

−F−1P21P
−1
11 F−1

)

where F = P22 −P21P
−1
11 P12 non-singular.

The determinant of a block diagonal matrix is∣∣∣∣∣P11 O

O P22

∣∣∣∣∣ = |P11| · |P22|

and its inverse is, assuming that P−111 and P−122 exist,(
P11 O

O P22

)−1
=

(
P−111 O

O P−122

)
.

9 Derivatives with Matrix Algebra

A linear function f from the n-dimensional vector space of real numbers, Rn,

to the real numbers, R, f : Rn −→ R is determined by the coefficient vector

a = (a1, . . . , an)′:

y = f(x) = a′x =
n∑

i=1

aixi = a1x1 + a2x2 + · · ·+ anxn

where x is a column vector of dimension n and y a scalar.

The derivative of y = f(x) with respect to the column vector x is defined as

follows:

∂y

∂x
=
∂a′x

∂x
=


∂y/∂x1

∂y/∂x2
...

∂y/∂xn

 =


a1

a2
...

an

 = a

The simultaneous equation system y = Ax can be viewed as m linear func-

tions yi = a′ix where a′i denotes the i-th row of the (m × n) dimensional

matrix A. Thus the derivative of yi with respect to x is given by

∂yi
∂x

=
∂a′ix

∂x
= ai
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Consequently the derivative of y = Ax with respect to row vector x′ can be

defined as

∂y

∂x′
=
∂Ax

∂x′
=


∂y1/∂x′

∂y2/∂x′

...

∂yn/∂x′

 =


a′1

a′2
...

a′n

 = A.

The derivative of y = Ax with respect to column vector x is therefore

∂y

∂x
=
∂Ax

∂x
= A′.

For a quadratic matrix A of dimension (n × n) and the quadratic form

x′Ax =
∑n

j=1

∑n
i=1 xixjaij the derivative with respect to the column vector

x is defined as
∂x′Ax

∂x
= (A + A′)x.

If A is a symmetric matrix this reduces to:

∂x′Ax

∂x
= 2Ax.

The derivative of the quadratic form x′Ax with respect to the matrix ele-

ments aij is given by
∂x′Ax

∂aij
= xixj.

Therefore the derivative with respect to the matrix A is given by

∂x′Ax

∂A
= xx′.

10 Kronecker Product

The Kronecker Product of a m × n Matrix A with a p × q Matrix B is a

mp× nq Matrix A⊗B defined as follows:

A⊗B =


a11B a12B . . . a1nB

a21B a22B . . . a21B
...

...
. . .

...

am1B am1B . . . amnB


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The following calculation rules hold:

(A⊗B) + (C⊗B) = (A + C)⊗B

(A⊗B) + (A⊗C) = A⊗ (B + C)

(A⊗B)(C⊗D) = (AC)⊗ (BD)

(A⊗B)−1 = A−1 ⊗B−1

tr(A⊗B) = tr(A)tr(B)
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