
Time –Varying Rational Expectations Models

Klaus Neusser *

December 18, 2018

Abstract

This paper develops a comprehensive theory for rational expec-
tations models with time–varying (random) coefficients. Based on
the Multiplicative Ergodic Theorem it develops a “linear algebra”
in terms of Lyapunov exponents, defined as the asymptotic growth
rates of trajectories. Together with their associated Lyapunov spaces
they provide a perfect substitute for the eigenvalue/eigenspace anal-
ysis used in constant coefficient models. In particular, they allow the
construction of explicit solution formulas similar to the standard case.
These methods and their numerical implementation is illustrated us-
ing a canonical New Keynesian model with a time–varying policy rule
and lagged endogenous variables.
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1 Introduction

This paper develops a comprehensive theory for rational expectations models
with time–varying (random) coefficients. Based the Multiplicative Ergodic
Theorem it develops a “linear algebra” in terms of Lyapunov exponents, de-
fined as the asymptotic growth rates of trajectories. Together with their
associated Lyapunov spaces they provide a perfect substitute for the eigen-
value/eigenspace analysis used in constant coefficient models. In particular,
they allow the construction of explicit solution formulas similar to the case
of constant coefficients.

The introduction of Lyapunov exponents is inevitable because the eigen-
values of the coefficient matrices provide in general no information about
the dynamic properties of the underlying difference equation. Elaydi (2005,
p. 191), Colonius and Kliemann (2014, pp. 109–110), Costa, Fragoso,
and Marques (2005, section 3.3.2) and Neusser (2017, appendix A) pro-
vide examples where the coefficient matrix alternates between two values
such that the model becomes unstable although all eigenvalues in both al-
ternatives are absolutely smaller than one.1 Hence the spectral theorem (see
Meyer, 2000, chapter 7.2) which underlies the usual solution formulas in
the case of constant coefficients is no longer applicable. Fortunately, the
Lyapunov exponents are a perfect substitute. Taking a random dynamical
systems perspective, Oseledets’ celebrated Multiplicative Ergodic Theorem
(MET) lifts the eigenvalue\eigenvector analysis used in the constant coeffi-
cient case to the case of stochastically varying coefficients using the Lyapunov
exponents\spaces.2 Thus, the MET paves the way for the derivation of ex-
plicit solution formulas for rational expectations model with stochastically
varying coefficients. These solution formulas turn out to be in the spirit of
Blanchard and Kahn (1980), Klein (2000), and Sims (2001) and are
therefore directly interpretable in economic terms.

The theory outlined in this paper turns out to be very versatile and
easily implementable. It allows to analyze a wide class of rational expec-
tations models which, so far, have been inaccessible or hardly accessible to
economists. It encompasses, in particular, models with Markov–switching
or autoregressively moving coefficients with and without lagged dependent
variables. Thereby, the exogenous forcing variables follow general stochastic

1Francq and Zaköıan (2001) provide further illuminating examples in the context of
multivariate Markov-switching ARMA models.

2Colonius and Kliemann (2014) provides a clear and accessible presentation of the
MET by relating it to the standard eigenvalue\eigenspace analysis. The monograph by
Arnold (2003) and Viana (2014) also offer an elaborated and excellent expositions, but
are mathematically more demanding.
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processes, including ARMA processes. There is, however, a price to pay for
this generalization: the Lyapunov exponents and their associated Lyapunov
spaces cannot, in general, be computed analytically, but are only accessi-
ble via numerical procedures. This alleged disadvantage is compensated by
powerful numerical algorithms which do not only allow the computation of
the Lyapunov exponents, but also their corresponding Lyapunov spaces (see
Dieci and Elia (2008) and Froyland et al. (2013) for details). In doing
so, this is the first paper to make explicit use in economics of Lyapunov expo-
nents/spaces along with the MET to analyze dynamic, respectively rational
expectations models.

The development of such a theory seems pressing as the presupposition
of constant coefficients in rational expectations macroeconomic models is
a very tenuous position. Indeed, there are several convincing reasons to
believe in time-varying coefficients instead. First, time-varying coefficient
models arise naturally from the linearization of nonlinear models along solu-
tion paths (Elaydi, 2005, p. 219–220). Second, the relationships describing
the economy undergo structural changes giving rise to drifting coefficients as
emphasized by Lucas’ critique. Sargent (1999), for example, provides an
interpretation in terms of self-confirming equilibria and learning. Third, poli-
cies and policy rules are subject to change. Cogley and Sargent (2005),
Primiceri (2005), or Chen, Leeper, and Leith (2015), among many oth-
ers, provide empirical evidence with regard to U.S. monetary policy.

Related Literature This paper shares the ambition expressed in the pi-
oneering work by Farmer, Waggoner, and Zha (2009), Farmer, Wag-
goner, and Zha (2011), and Foerster et al. (2016) to provide a solid and
adequate methodology to analyze rational expectations models with time–
varying coefficients. Their analysis is, however, limited Markov-switching ra-
tional expectations models. This venture triggered a number of papers which
extended the original framework to incorporate notably lagged endogenous
and predetermined variables (Barthélemy and Marx, 2017; Cho, 2016;
Foerster, 2016). They derive conditions for model determinacy and sta-
bility based on a mean-square stability criterion as originally proposed by
Costa, Fragoso, and Marques (2005) within the context of Markov–
switching coefficient models. As deserving this research may be, the frame-
work seems unnecessarily restrictive. First, the focus on second moments
excludes many variables of interest to economists such as asset prices. Sec-
ond, the reliance on finite state Markov-switching mechanisms as a source
of time-variation excludes many interesting alternatives, like slowly drifting
coefficients. Finally, in contrast to the Lyapunov spectrum (the set of all
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Lyapunov exponents) the mean-square stability criterion and its adaptations
do not completely capture the dynamic properties of the model. This be-
comes, however, necessary if one wants to derive and analyze explicit model
solutions. This will require to divide the Lyapunov exponents and their
associated Lyapunov spaces into those associated with stable, respectively
unstable dynamics. The approach presented here will cope with these issues
without substantial costs.

There is a related, but apparently disconnected literature on Markov–
switching multivariate ARMA models in the spirit of Hamilton (1989,
2016). This time series literature shows that a strictly stationary solution
exists whenever the top–Lyapunov exponent (the largest Lyapunov expo-
nent) is strictly negative (see Brandt (1986) and Bougerol and Picard
(1992)). In addition, Francq and Zaköıan (2001) derive a necessary and
sufficient condition for the existence of a second–order stationary solution
(i.e. for mean–square stability). Their eigenvalue criterion is practically sim-
ilar to those provided in Cho (2016) and Foerster (2016) (see Francq
and Zaköıan, 2001, theorem 2). While the top–Lyapunov exponent is an
important characteristic, it does not in general capture all dynamic properties
of the underlying model. In this manner, the time series literature bridges
the gap between the dynamical systems approach advocated in this paper
and the macro economic oriented literature from the previous paragraph.

The paper proceeds by first exposing the general setup in Section 2. It lays
out the basic assumptions, presents and explains the Multiplicative Ergodic
Theorem (MET). The main contribution of the paper is presented in Section 3
which derives explicit solution formulas together with some implications.
Having presented the general theory, Section 4 illustrates the usefulness of
the proposed methods by applying them to a simple New Keynesian model
with a randomly switching Taylor rule. More specifically, I allow the policy
to switch between two states which would lead to determinate, respectively
indeterminate models in the deterministic case. The economic relevance and
the consequences of these two alternative rules have been analyzed by Gaĺı
(2011). This model also serves as a prime example in the contributions cited
above. Finally, I draw some conclusions for further applications and research.
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2 Random Coefficients Rational Expectations

Models

2.1 Model Setup

The class of rational expectations models with time-varying (random) co-
efficients analyzed in this paper consist of an affine state equation which
describes the evolution of the state xt ∈ Rd over time subject to boundary
conditions. More specifically, the state equation takes the following form:

Etxt+1 = ψt(xt) = Atxt + bt, t ∈ Z, (2.1)

where ψt is a randomly chosen affine map.3 In contrast to conventional ratio-
nal expectations models, the coefficient matrix At is not constant, but varies
randomly over time. For convenience and to avoid unnecessary technical in-
tricacy, At ∈ GL(d), the set of nonsingular (d × d) matrices, for all t. The
term bt ∈ Rd captures all exogenous forces or shocks which impinge on the
economy. If the coefficient matrix At is constant, the expectational difference
equation (2.1) encompasses most of the rational expectations models encoun-
tered in the literature. Their properties have been exhaustively analyzed in
Blanchard and Kahn (1980), Klein (2000), and Sims (2001) to name
just the most relevant references.

The above setup is quite general and versatile. By enlarging the state
space, it also encompasses models with lagged endogenous variables which
have proven technically difficult to analyze up to now (Cho, 2016). Moreover,
the process governing the evolution of At can be quite involved. For example,
regime-switching and autoregressive schemes are easily implemented. The
only practically important feature is that the evolution of At is exogenous to
the model, i.e. determined outside the model, and that it is taken into account
in forming conditional expectations. In the example treated in Section 4 the
evolution of At is governed by a hidden Markov chain which makes the model
a Markov-switching rational expectations model. A similar remark can be
made with respect to bt. In particular, bt can follow some autoregressive
process.

The sequence {(At, bt)} of random variables is defined on some probability
space (Ω,F,P), i.e. a set Ω endowed with a σ–algebra F and a probability
measure P. Define Ft as Ft = σ{(xs, As, bs) : s ≤ t}, i.e. Ft is the smallest

3Often rational expectations models are written as B1,txt = B2,tEtxt+1 + zt. However,
this is equivalent to the form (2.1) with At = B−1

2,tB1,t and bt = −B−1
2,t zt, provided

B2,t ∈ GL(d). An extension to singular B2,t matrices is possible, but has been deliberately
left out in this paper.
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σ–algebra such that (xs, As, bs) is measurable for all s ≤ t. The sequence of
σ–algebras Ft then becomes a filtration adapted to {xt} and {(At, bt)} with
Ft ⊆ F. Etxt+1 denotes the conditional expectation with respect to Ft, i.e.
Etxt+1 = E[xt+1 | Ft].

From a conceptual point of view it is important to have a clear under-
standing on the randomness driving {At}. More precisely, I think of {At}
as being driven by a dynamical system in the following way. Define the
measurable map

θ : Ω→ Ω

to be the time shift and denote its t-fold application by θt. Clearly, θ satisfies
the cocycle properties: θ0 = Id and θt+s = θtθs, for all t, s ∈ Z. Hence, θ is
invertible. The time shift is also measure preserving, i.e. θP = P. Maps with
these properties are called metric dynamical systems in the corresponding
literature.4 In addition, the time shift is ergodic (see f.e. Coudène, 2016,
chapter 2). The following assumption summarizes these properties.

Assumption 1 (Time Shift). The dynamic properties of {At} are governed
by a metric dynamical system θ : Ω → Ω. We specify θ to be the time shift.
Hence θ is an invertible, ergodic, and measure–preserving transformation
satisfying the cocycle properties.

In this vein, At(ω) is denoted by A(θtω), similarly for ψt and bt. Some-
times, we suppress the dependence on ω and just write At, respectively bt
and ψt for short. In Section 4.1 we give an explicit account of θ and specify
{At} as the outcome of a hidden Markov chain.

Following Arnold (2003, chapter 1), the evolution of the system on the
bundle Ω×Rn can be envisioned as in Figure 1. While ω is shifted by θ to
θω, the point x0 in the fiber ω×Rd is shifted to x1 = ψ(ω)x0 = A(ω)x0 +b(ω)
in the fiber θω × Rd. In the next period θω is shifted to θ2ω whereas x1 is
shifted to x2 = ψ(θω) = A(θω) + b(θω) and so on. Thus, on each fiber the
system is affine in the usual sense.

Throughout the paper I assume that the following integrability condition
holds.

Assumption 2 (Integrability).

log+ ‖A‖, log+ ‖A−1‖ and log+ ‖b‖ ∈ L1(Ω,F,P).

Thereby log+ x stands for max{log x, 0}. This integrability assumption will
be satisfied if the random variables would be essentially bounded. Hence,

4For interpretations of θ other than the time shift see Arnold (2003) who presents
further details and generalizations.
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Figure 1: The Evolution of an Affine Random Dynamic System
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the integrability condition is satisfied if E‖A‖ and E‖b‖ exist. This is, from
a practical point of view, a very weak condition which allow {At} and {bt}
to follow a wide variety of stochastic processes, including autoregressive and
Markov–switch ones.

Here and in the following ‖.‖ denotes the operator norm induced by the
Euclidean metric, i.e. ‖A‖ = max‖x‖=1 ‖Ax‖ = δ1 where δ1 is the largest
singular value of A, i.e. δ1 is the positive square root of the largest eigenvalue
of A′A. Because all norms are equivalent in Rd, the integrability assump-
tion and the Multiplicative Ergodic Theorem (MET) presented below are
independent from any specific submultiplicative norm.

Boundary conditions The model setup is completed by assuming some
boundary conditions. They usually come in two forms: initial value and
boundedness conditions. The former can be written as

c = Rx0, c ∈ Rr, (2.2)

where R is a given (r × d) matrix of rank r, 0 ≤ r ≤ d. In its simplest and
most widely used form R = (Ir, 0) which fixes the first r elements of x0 to
be equal to c. When r < n, the initial value conditions are not sufficient
to pin down x0 uniquely. Hence, they are complemented by boundedness
conditions:

there exists M ∈ R such that ‖xt‖ < M for all t ∈ Z. (2.3)

The latter conditions are usually rationalized by assuming bt to be bounded
which, depending on the particular model in mind, implies that unbounded
xt is economically not feasible or sensible.

2.2 Preliminary Considerations

The expectational difference equation (2.1) satisfies the superposition prin-

ciple: given two solutions {x(1)
t } and {x(2)

t }, then {x(1)
t − x

(2)
t } satisfies the

linear expectational difference

Etxt+1 = Atxt. (2.4)

Thus, every solution is of the form:

xt = x
(g)
t + x

(p)
t

where {x(g)
t } denotes the general solution of the linear equation (2.4) and

{x(p)
t } a particular solution of equation (2.1). Hence, the solution can be
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found in two steps. First, find the general solution to the linear equation (2.4)
and then look for a particular solution of equation (2.1).5

In order to find the general solution to the linear expectational difference
equation (2.4) define Φ(t) = Φ(t, ω) as the random matrix product:

Φ(t) = Φ(t, ω) =


At−1(ω) . . . A1(ω)A0(ω), t = 1, 2, . . .;
Id, t = 0;
At(ω)−1 . . . A−1(ω)−1, t = −1,−2, . . .

This defines a linear cocycle over θ, i.e. A : Ω → GL(n) is measurable,
Φ(0, ω) = Id, and Φ(t + s, ω) = Φ(t, θsω)Φ(s, ω) for all t, s ∈ Z and all
ω ∈ Ω. Hence, Id = Φ(0, ω) = Φ(t, θ−tω)Φ(−t, ω) which implies the following
Lemma by direct calculation.

Lemma 1. The cocycle properties imply

Φ(−t, ω) = Φ(t, θ−tω)−1

Φ(t, ω)−1 = Φ(−t, θtω).

Next define a new variable yt as yt = Φ(t)−1xt. It is easy to see that {yt}
is a martingale:

Etyt+1 = Et
(
Φ(t+ 1)−1xt+1

)
= Φ(t+ 1)−1Etxt+1 = Φ(t+ 1)−1Atxt = yt.

Similarly, the time reversed process ỹt = y−t, t ∈ Z, is also a martingale.
This implies without any additional assumptions that there exists a random
variable y satisfying limt→∞ yt = y a.s. and in mean (see Grimmett and
Stirzaker, 2001, section 12.7). Moreover, the original martingale can be
reconstructed from y by setting yt = E(y | Ft). Thus, the space of martingales
can be continuously parameterized by the space of random variables which
are measurable with respect to F where F = σ

(⋃
t∈Z Ft

)
.6 The general

solution of the linear equation (2.4) can therefore be represented as

xt = (At−1 . . . A1A0)x = Φ(t)x, (2.5)

where x is some random variable measurable with respect F.
Given some starting value x and a realisation ω, the equation (2.5) deter-

mines one particular trajectory or solution. Hence, trajectories are parame-
terized by x and ω and are denote by by xt = ϕ(t, ω, x). The existence and the
stability properties of the solutions (2.5) depend crucially on the convergence

5Cho (2016) follows a similar, but not exactly equal, two step procedure.
6Compare this to Klein (2000, Definition 4.3 and Assumption 4.2)
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of the matrix products Φ(t).7 To investigate this issue, consider a new trajec-
tory obtained from a small perturbation ∆x of x. The resulting change ∆xt
at time t in the trajectory is then given by ∆xt = ϕ(t, ω,∆x) = Φ(t, ω)∆x.
This motivates to define the Lyapunov exponent λ as the mean exponential
rate of divergence or convergence of the two trajectories for t → ∞ and
‖∆x‖ → 0. In the univariate case, this amounts to consider λ defined as
|∆xt| ≈ etλ|∆x|. Hence the Lyapunov exponent may be expressed as

λ(ω, x) = lim
t→∞

lim
|∆x|→0

1

t
log
|∆xt|
|∆x|

= lim
t→∞

1

t

t−1∑
j=0

log |aj|.

The above definition describes the mean asymptotic rate of divergence (con-
vergence) from (to) the zero steady state of a small perturbation of the zero
solution. To account for the possibility that the limit may not exist, the
Lyapunov exponent is generally defined in terms of the limes superior:

λ(ω, x) = lim sup
t→∞

1

t
log ‖ϕ(t, ω, x)‖ (2.6)

where in the multivariate case the absolute values is replaced by some norm.
The Lyapunov exponent therefore describes the asymptotic exponential growth
rate of the linear random dynamical system xt+1 = Atxt with initial value
x 6= 0. Readers not familiar with Lyapunov exponents should consult Ap-
pendix A which shows the relation to the eigenvalues in the case of constant
coefficient.

It will be the subject of Oseledets’ theorem to show that there exist only
a finite number ` ≤ n of different Lyapunov exponents and that they are ac-
tually obtained as (double-sided) limits. Moreover, they are independent of x
and ω. The importance of the Lyapunov exponents derives from their ability
to replace the eigenvalue/eigenspace analysis which provides no information
in the case of time-varying coefficients. Indeed, as noted in the Introduction,
the eigenvalues of the “time frozen” or “local” matrices At are uninformative
about the stability of the underlying system of difference equations.8

2.3 Oseledets’ Multiplicative Ergodic Theorem

Although the eigenvalue/eigenspace analysis of the “time frozen” matrices At
provides in general no information about the stability and asymptotic behav-

7The study of random matrix products has a long history going back to Bellman
(1954) and culminated in the acclaimed theorems by Furstenberg and Kesten (1960)
and, more relevant for this paper, Oseledets’ Multiplicative Ergodic Theorem (MET)
(Oseledets, 1968).

8See also footnote 1 for references.

9



ior of the underlying difference equation9, the Lyapunov exponents/spaces
provide a perfect substitute. Indeed Oseledets’ Multiplicative Ergodic Theo-
rem (MET) (Oseledets, 1968) lifts the results from standard linear algebra
which underlies the constant coefficient case to dynamical systems with ran-
dom coefficients. An extensive exposition of this theorem with proofs and
technical details can be found in Arnold (2003) and Viana (2014). Here
I follow Colonius and Kliemann (2014) and present a more accessible
version.10

Theorem 1 (Multiplicative Ergodic Theorem (MET)). Let θ be a dynamical
system satisfying assumption 1 and assume the integrability condition 2 to
hold. Then the linear random coefficient dynamical system xt+1 = Atxt in-
duces a splitting of Rd into ` ≤ d linear subspaces Lj(ω), j = 1, . . . , `. These
subspaces have the following properties:

(i) There is a decomposition (splitting)

Rd = L1(ω)⊕ · · · ⊕ L`(ω)

of Rd into ` random subspaces Lj(ω). These subspaces are not con-
stant, but depend measurably on ω. However, their dimensions remain
constant and equal to dj. The spaces Lj(ω) are called Lyapunov spaces.

(ii) The Lyapunov spaces are equivariant, i.e. A(ω)Lj(ω) = Lj(θω).

(iii) There are real numbers ∞ > λ1 > · · · > λ` > −∞ such that for each
x ∈ Rd \ {0} the Lyapunov exponent λ(ω, x) ∈ {λ1, . . . , λ`} exists as a
limit and

λ(ω, x) = lim
t→±∞

1

t
log ‖ϕ(t, ω, x)‖ = λj if and only if x ∈ Lj(ω) \ {0}.

(iv) The limit

Υ(ω) = lim
t→∞

(Φ(t, ω)′Φ(t, ω))
1/2t

(2.7)

exists as a positive definite matrix. The different eigenvalues of Υ(ω)
are constants and can be written as exp(λ1) > · · · > exp(λ`); the cor-
responding random eigenspaces are L1(ω), . . . , L`(ω).

9See the references in the Introduction and footnote 1.
10It is not the most general formulation as there are versions of this theorem with one-

sided time (i.e. N instead of Z), continuous time, and possibly non-invertible matrices
At.
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(v) The Lyapunov exponents are obtained as limits from the singular val-
ues σk of Φ(t, ω) as follows. The set of indices {1, 2, . . . , d} can be
decomposed into subsets Sj, j = 1, . . . , `, such that for all k ∈ Sj,

λj = lim
t→∞

1

t
log δk(Φ(t, ω)).

It is worth emphasizing that, although the Lyapunov subspaces Lj(ω)
are random as they depend on ω, their dimension remains constant and
equal to dj. Moreover, they are, in general, not orthogonal to each other.
Note also the equivariance (invariance or covariance) of these subspaces, i.e.
A(ω)Lj(ω) = Lj(θω). This property becomes relevant in the numerical im-
plementation. There exists an alternative decomposition of Rd into orthog-
onal subspaces. These subspaces are, however, no longer equivariant (see
Froyland et al., 2013, for details). Appendix B provides further explana-
tions of the MET.

3 Construction of Solutions

Given these preliminaries, it is now possible to construct explicit solution
formulas. Divide, for this purpose, the state space into three subspaces Ls(ω),
Lc(ω), and Lu(ω) corresponding to the Lyapunov spaces with negative, zero,
and positive Lyapunov exponents:

Ls(ω) =
⊕
λj<0

L(λj, ω), Lc(ω) = L(0, ω), and Lu(ω) =
⊕
λj>0

L(λj, ω).

These subspaces are called the stable subspace, the center, and the unstable
subspace, respectively. Thus, the zero solution of xt+1 = Atxt is asymptoti-
cally stable if and only if all Lyapunov exponents are negative, or equivalently
if the top Lyapunov exponent (the largest Lyapunov exponent) is negative.11

This is equivalent to Ls(ω) = Rd for some (hence for all) ω. The difference
equation (2.1) is called hyperbolic if Lc(ω) = ∅ or, equivalently, if all Lya-
punov exponents are different from zero. For a hyperbolic difference equation
the zero solution is called a saddle point if both Ls(ω) and Lu(ω) have di-
mensions ds = dimLs(ω), respectively du = dimLu(ω), strictly greater than
zero.

In the following, I assume the difference equation to be hyperbolic.

11In the time series analysis only the size of the top Lyapunov exponent determines
whether a stationary solution exists (Francq and Zaköıan, 2001). In the context of
rational expectations models, the whole Lyapunov spectrum (all Lyapunov exponents) is
needed to derive an explicit solution formula.
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Assumption 3 (Hyperbolicity). The linear state equation (2.4) is hyper-
bolic, i.e. Lc = ∅.

The hyperbolicity assumption becomes particularly relevant when the
difference equation is obtained from the linearization of a nonlinear system.
Then the Hartman–Grobman theorem tells us that, under the assumption of
hyperbolicity, the stability properties of the nonlinear system can be inferred
from those of the linearized one (see f.e Robinson (1999, chapter 5) or
Coudène (2016, chapter 8) and Arnold (2003, section 4.2.1 and chapter 7)
for the random coefficient case). The hyperbolicity assumption also becomes
relevant when constructing a particular solution.

Next define πs(ω) : Rd → Ls(ω) as the projection onto Ls(ω) along Lu(ω)
and πu(ω) : Rd → Lu(ω) as the projection onto Lu(ω) along Ls(ω). These
projections depend on ω because the Lyapunov spaces are random. These
projections can be written in terms of matrices (Meyer, 2000, chapter 2.9):

πs(ω) = B(ω)

(
Ids 0
0 0

)
B−1(ω) and πu(ω) = B(ω)

(
0 0
0 Idu

)
B−1(ω)

where B(ω) is a basis of Rd obtained from the union of the basis of Ls(ω)
and Lu(ω). Although the Lyapunov spaces vary implying varying basis B(ω),
the dimensions ds and du are fixed as stated by the MET.12 Moreover, the
equivariance of the Lyapunov spaces ( see (ii) in Theorem 1) implies that
πs(θtω)Φ(t, ω) = Φ(t, ω)πs(ω) and similarly for πu(ω).

In analogy to the deterministic case, I’m now in a position to construct a
particular solution using the towering property of conditional expectations.
This leads to the following theorem which is similar in spirit to the analysis
of Blanchard and Kahn (1980), Klein (2000) or Sims (2001).

Theorem 2 (Solution Formula). The rational expectations model consisting
of the difference equation (2.1) and the boundary conditions (2.2) and (2.3)
admits a unique solution of the form

xt(ω) = Φ(t, ω)x(ω) + x
(b)
t (ω) + x

(f)
t (ω) (3.1)

where

x
(b)
t (ω) = Φ(t, ω)

∞∑
j=0

Φ(t− j, ω)−1πs(θt−jω)bt−1−j

x
(f)
t (ω) = −Φ(t, ω) Et

[
∞∑
j=0

Φ(t+ j + 1, ω)−1 πu(θt+j+1ω)bt+j

]
12Compare this to the case of triangular matrices discussed in Appendix B.
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if assumptions 1 2, and 3 hold and if the rank condition

rank

(
R(

0 Idu
)
B(ω)−1

)
= d (3.2)

is satisfied. In this case, x(ω) is uniquely determined from the equation sys-

tem c−Rx(p)
0 = Rx(ω) and πu(ω)x(ω) = 0.

Proof. The proof is relegated to Appendix C.

As in the constant coefficient case, the part corresponding to the nega-
tive Lyapunov exponents is solved backwards in time whereas the part corre-
sponding to positive Lyapunov exponents is solved forward in time. The two
parts, therefore, have the interpretation of present values with time-varying
“discount factors”. The projections applied to bt−j−1 and bt+j guarantee
that discounting is applied only in the directions where the infinite sum con-
verges. In practice these expressions can be computed recursively. A special
case arises if all Lyapunov exponents are positive.

Corollary 1. If all Lyapunov exponents are positive, the unique solution is
given by

xt = −Φ(t, ω) Et

[
∞∑
j=0

Φ(t+ j + 1, ω)−1 bt+j

]
. (3.3)

Proof. If all Lyapunov exponents are positive, du = d and πu(ω) = Id. In
this situation, the rank condition implies that a unique solution can only
arise if there is no initial condition. Hence, x0(ω) = 0 because πu(ω)x0(ω) =
x0(ω) = 0.

Corollary 2. r = ds is a necessary condition for the existence of a unique
nonexplosive solution.

If r < ds, there exists a whole family of nonexplosive solutions and the
system is then called indeterminate. If r > ds, the equation system is overde-
termined and no nonexplosive solution exists.

Another immediate consequence of Theorem 2 is that x
(p)
t = x

(b)
t + x

(f)
t

induces an invariant distribution. Hence, x
(p)
t behaves like a “moving steady”.
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4 The New Keynesian Model with Random

Policies

4.1 Specification of the Dynamical System

For this approach to be of practical use, it is important to understand how
the Lyapunov exponents depend on the underlying randomness and whether
they are robust with regard to perturbations. In particular, one wants to
know whether this dependence is continuous. While this is a delicate issue
in general which is the subject of current research (see Viana (2014, chap-
ters 9 and 10) and Backes, Brown, and Butler (2015)), continuity is
guaranteed for the application envisaged in this paper.

More specifically, I view At to be the outcome of a Markov chain with
finite state space S = {1, 2, . . . , s}. To each state j ∈ S I associate a matrix
A(j) ∈ GL(d). The probability space Ω is then given by sequences of states
over Z, i.e. Ω = SZ = {ω | ω = (ωj)j∈Z with ωj ∈ S}, and the time shift θ is
defined as θω = θ(ωj) = (ωj+1).

The probability measure P on Ω is the Markov measure associated with
the transition matrix P where

(P )ij = P[A(θω) = A(j) | A(ω) = A(i)], i, j = 1, . . . , s.

Thereby (P )ij is the probability of moving from i to state j in the next
period. I assume the Markov chain defined through P to be regular, i.e. P is
irreducible (ergodic) and aperiodic. Hence, there exists a unique stationary
distribution δ satisfying δ′P = δ′, δ � 0, and limt→∞ δ

′
0P

t = δ′ for any
initial distribution δ0. For s = 2, Malheiro and Viana (2015) showed that
the Lyapunov exponents depend continuously on the parameters in A(1) and
A(2), and P . Moreover, this is equivalent to the continuity with respect to the
corresponding Lyapunov spaces (Backes and Poletti, 2017).13 With this
specification, the model becomes a Markov–switching rational expectations
model which is the prime example analyzed in the literature so far. Hence, the
results presented below are comparable to those presented there. However, it
is worth emphasizing that the approach based on the MET is very versatile
and can account for many other {At} processes (f.e. autoregressive processes).

In the following example I consider a Markov-switching specification with
just two states where the state transition matrix is taken to be

P =

(
1− p p
q 1− q

)
, p, q ∈ (0, 1).

13I thank Jairo Bochi and Anthony Quas for pointing this out to me and indicating me
the relevant literature.
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As p, q ∈ (0, 1), the chain is regular with invariant distribution δ′ =
(

q
p+q

, p
p+q

)
.

Thus, δ is the unique distribution which satisfies δ′P = δ′. Hence, the chain
is on average in q/(p+ q) percent of the time in state one and p/(p+ q) percent of
the time in state two. The mean exit time from state i is 1/(1− (P )ii) which
equals 1/p for state one and 1/q for state two. For p = q = 1/2 the chain has
no memory and the sequence of states is iid. Following Shorrocks (1978),
I define a mobility index M(P ) as

M(P ) =
d− trP

d− 1
= p+ q.

This index is equal to the reciprocal of the harmonic mean of the mean exit
times.14 It can be interpreted as measuring the randomness or mobility of
the chain.

As there is in general no analytical solution for the Lyapunov exponents,
numerical computations have to be applied. Because of the exponential
growth, numerical computations are not a straightforward task. A naive
application quickly results in numerical overflows. I therefore make use of
the iterative QR procedure outlined in Dieci and Elia (2008). Computa-
tions of the Lyapunov spaces are more involved and numerically sensitive
(Froyland et al., 2013). The Appendix D provides more details.

4.2 Specification of the Model

I take the canonical New Keynesian model (NK model) as my prime exam-
ple. This model has been extensively analyzed in the literature.15 Papers
most closely related to this one are Lubik and Schorfheide (2004), Davig
and Leeper (2007), Farmer, Waggoner, and Zha (2009), Gaĺı (2011),
Chen, Leeper, and Leith (2015), Foerster (2016), and Cho (2016). A
simple version of this model typically consists of the following three equa-
tions:

yt = Etyt+1 − σ−1(it − Etπt+1) + udt , (IS-equation)

πt = βEtπt+1 + κyt + ust , (forward-looking Phillips-curve)

it = φtπt, (Taylor-rule)

where the endogenous variables yt, πt, and it denote income (output gap),
the rate of inflation and the nominal interest rate. udt and ust are exogenous

14The index is actually conceived by Shorrocks (1978) for stochastic matrices with
quasi dominant diagonals. This aspect is, however, irrelevant for our purposes.

15See Gaĺı (2018) for a recent assessment of the model.
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demand and supply shocks, respectively. In this simplified version of the NK
model there are no initial conditions.

As is well-known, the determinacy of the model depends on the strength
with which the monetary authority reacts to inflation. For values of φ below
one, the model becomes indeterminate, whereas for values above one there
exists a unique solution. However, monetary policy rules are not constant
over time and can often, at least for some time, be characterized as policies
with 0 ≤ φ < 1 (see Gaĺı, 2011, for details and economic interpretations).
Hence, it makes sense to treat the parameter φ as random and index it by
t. This sensitivity of the qualitative nature of the model with respect to φ
makes the NK model an interesting object of demonstration.

The model can be expressed in terms of xt+1 = (yt+1, πt+1)′ by insert-
ing the Taylor-rule in the IS-equation to obtain an affine random coefficient
expectational difference equation of the form (2.1):

Etxt+1 = Atxt + bt, t ∈ Z, (4.1)

where

At =
1

β

(
β + (κ/σ) (βφt − 1)/σ
−κ 1

)
and bt =

(
udt − ust/(βσ)

ust/β

)
.

I consider the case with two states. In the first state the central does not
react to inflation at all so that φt = 0.16 In the second state the central bank
reacts to inflation with intensity φ > 0. Hence,

A(1) =
1

β

(
β + (κ/σ) −1/σ
−κ 1

)
and A(2) =

1

β

(
β + (κ/σ) (φβ − 1)/σ
−κ 1

)
.

Because detAt = β−1(1+φtκ/σ) > 1, At ∈ GL(2) irrespective of the value of
φt. Both matrices are the same except for the term (At)12 which is −1/(βσ)
in state one and (φβ − 1)/(βσ) in state two. I specify the values for the
parameters β, κ, and σ to equal 0.985, 0.8, and 1, respectively. The value
for φ ranges from 0 to 4 in steps of length 0.01. Finally, I examine two
alternative transition matrices whose properties are summarized in Table 1.

The MET implies that there are two, not necessarily different, Lyapunov
exponents λmax and λmin, λmax ≥ λmin. Moreover, the last assertion of the
MET implies λmax + λmin = E log | detA(ω)|. As the determinant of A(ω) is
always strictly greater than one, irrespective of ω, the sum of both Lyapunov
exponents is always strictly greater than zero. Hence, λmax > 0. The model

16This case also occur if the central bank bases its policy on an inflation forecast which
takes the interest path as given (Gaĺı, 2011).
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Table 1: Characteristics of Transition Matrices

specification invariant mean exit times mobility index
distribution from state 1 from state 2 M(P )

p = 0.5, q = 0.5 (0.5, 0.5)′ 2 2 1
p = 0.6, q = 0.4 (0.4, 0.6)′ 1.66 2.5 1

is therefore determinate if both Lyapunov exponents are greater than zero.
In this case, Lu(ω) = Rn and the unique solution is given by equation (3.3).
If, however, λmin is smaller than zero, the model becomes indeterminate.
Ls and Lu are one dimensional and thus nontrivial in this case. Because the
model lacks any initial value conditions, the computation of Lyapunov spaces
is unnecessary.

4.3 Simulation Results

The simulation results are summarized in the bifurcation diagram in Figure 2.
Consider first the benchmark of a deterministic policy (red line). For values
of φ below one, λmax > 0 > λmin implying an indeterminate model. As the
reaction of central bank to inflation increases as reflected by larger values of
φ, λmin increases and crosses the zero line when φ = 1. For values of φ bigger
than one, both Lyapunov exponents are positive so that the model becomes
determinate with a unique solution given by equation (3.3). For 1 < φ < 1.22,
the model has two distinct Lyapunov exponents corresponding to two distinct
real eigenvalues. For values of φ greater than 1.22, the eigenvalues become
conjugate complex and hence the Lyapunov exponents collapse.

When the policy is no longer fixed, but random, a qualitatively similar
picture emerges. Consider first the case p = q = 0.5 (green line) so that the
states alternate in an iid fashion with mean exit time from each state being
equal to two periods. Hence, the central bank reacts on average only in 50
percent of the time to inflation. As shown in Figure 2, there are two distinct
Lyapunov exponents. Because the economy spends some time in a state one
with no reaction to inflation, the central bank must react more strongly in the
state where it takes inflation into account. According to our simulation result,
it must react with an intensity φ greater than 2.43 in state two to obtain a
determinate model. When the central bank follows the anti-inflation policy
more often as reflected by the specification p = 0.6, q = 0.4, the reaction to
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inflation in state two can be lower. The model already becomes determinate
for values of φ higher than 1.73 (blue line). This exercise clearly delineates
a trade-off between a strong reaction to inflation in state two and the time
spent in state two.

In a next step I generalize the New Keynesian model above by allowing
for lagged endogenous variables. Following Cho (2016), I include a lagged
interest rate and a monetary disturbance umt in the Taylor rule:

it = (1− ρ)φπt + ρit−1 + umt , 0 < ρ < 1.

This generalization can be easily accommodated within the theoretical frame-
work presented before by enlarging the state vector by it. Hence, xt+1 =
(yt+1, πt+1, it)

′ and the system matrices are given as

At =

1 −(βσ)−1 σ−1

0 β−1 0
0 0 1

 1 0 0
−κ 1 0
0 (1− ρ)φt ρ


and

bt =

−1 (βσ)−1 σ−1

0 −β−1 0
0 0 ρ

udt
ust
umt


Note that At ∈ GL(3), irrespective of the value of φt, because detAt = ρ/β >
0. Because of this increase in the dimension of the state vector, the number
of Lyapunov exponents rises to 3. As the value of it is given and known
in period t, the modified model has effectively one initial condition. Hence,
Corollary 2 implies that a determinate model requires one negative and two
positive Lyapunov exponents.

Leaving the values of all parameters as before and setting ρ = 0.7 pro-
duces the results summarized in Figure 3. In this figure I have for comparison
purposes omitted to display the third Lyapunov exponent. This exponent is
always negative and delivers no additional information concerning the deter-
minateness of the model. As one can deduce from Figure 3, the inclusion of a
lagged interest rate in the Taylor rule does not alter the qualitative features
of the model.

5 Conclusion

The purpose of this paper was to present to economists the mathematical
tools which would enable them to analyze rational expectations models with

19



0 0.5 1 1.5 2 2.5 3 3.5 4
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ly
ap

un
ov

 e
xp

on
en

ts deterministic
random

p=0.6, q=0.4

random
p=q=0.5

1.73

2.11 2.2

Figure 3: Lyapunov exponents of the New Keynesian model with lagged
interest rate as a function of φ

20



time-varying coefficients. The theoretical core of this methodology evolves
around the concept of Lyapunov exponents which measure the asymptotic
growth rates of trajectories. The Multiplicative Ergodic Theorem by Os-
eledets then showed that the Lyapunov exponents play a similar role in the
analysis of the stability of random dynamical systems as the eigenvalues do
in the standard case of constant coefficients. Based in this insight, the pa-
per shows how to construct solutions and analyze the stability of rational
expectations models with time–varying coefficients. This approach brings
the paper close to the spirit of the standard Blanchard–Kahn analysis of
rational expectations models with constant coefficients. The methodology
is also relevant for the analysis of regime–switching time series models á la
Hamilton (1989, 2016). In this literature, however, the emphasis is on the
top Lyapunov exponent whose negativity guarantees the existence of a sta-
tionary solution (see Brandt (1986), Bougerol and Picard (1992), and
Francq and Zaköıan (2001)).

The application of these tools requires numerical methods as analytical
solutions are almost never available. Fortunately, powerful procedures to
estimate the Lyapunov exponents as well as the corresponding Lyapunov
spaces have been developed (see Dieci and Elia (2008) and Froyland
et al. (2013), f.e.). Finally, the paper runs a simulation exercise of a proto-
type New Keynesian model with random Taylor rule and a lagged endoge-
nous variable to demonstrate the practical usefulness of the approach. This
exercise demonstrated that there are no conceptual obstacles to apply this
methodology to more sophisticated models.
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multivariate Markov–switching ARMA models”, Journal of Econometrics,
102, 339–364.

Froyland, Gary, Thorsten Hüls, Gary P. Morriss, and
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A Lyapunov Exponents and Eigenvalues

For a better understanding of subsequent arguments it is instructive to ex-
amine the case of constant coefficients first. Thus, xt = ϕ(t, ω, x) = ϕ(t, x) =
Atx and the Lyapunov exponents are just the logarithms of the distinct mod-
uli of the eigenvalues of A (Colonius and Kliemann, 2014, section 1.5).
Denote the different Lyapunov exponents by λ1 > · · · > λ`. Then, to each
Lyapunov exponent λj there is associated a subspace Lj, called Lyapunov
space, defined as Lj =

⊕
Ek where the direct sum is taken over all real

generalized eigenspaces Ek related to eigenvalues µk with λj = log |µk|. The
state space Rd can then be decomposed into a direct sum of these Lyapunov
spaces:

Rd = L1 ⊕ · · · ⊕ L`.
The definition of eigenvalues and eigenvectors imply that the Lyapunov
spaces are invariant with respect to A, i.e. ALj = Lj for j = 1, . . . , `. This
property is called equivariance.

Moreover, for any solution ϕ(t, x) with x 6= 0

λ(x) = lim
t→±∞

1

t
log ‖ϕ(t, x)‖ = λj if and only if x ∈ Lj.

The above characterization of Lyapunov exponents and Lyapunov spaces
requires to take the double-sided limit. To see this, suppose, for the sake
of the argument, that d = 2, A = diag(µ1, µ2) with µ1 6= µ2 ∈ R and
|µ1| > |µ2|. Furthermore, let ‖.‖ be the max–norm and denote x = (x1, x2)′.
The Lyapunov exponents are therefore computed as

λ(x) = lim sup
1

t
log max{|µt1x1|, |µt2x2|}.

In this case, the Lyapunov exponents are λ1 = log |µ1| and λ2 = log |µ2|
with the corresponding Lyapunov spaces L(λ1) = span(1, 0)′ and L(λ2) =
span(0, 1)′. The above characterization then reads

λ(x) = lim
t±∞

1

t
log max{|µt1x1|, |µt2x2|} = λ1 ⇔ x ∈ L(λ1) = span(1, 0)′.

Thus, the if-and-only-if statement only holds for the two-sided limit because
for t→ −∞ the above expression is dominated by |µ2|t. The same argument
applies for λ2 and L(λ2).

In order to prepare for the random coefficient case, it is instructive to
invoke the spectral theorem (Meyer, 2000, chapters 7.2 and 7.3). let A be
diagonalizable with spectrum σ(A) = {µ1, . . . , µ`}, then

Atx = µt1π1x+ · · ·+ µt`π`x
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where πj denote the projectors onto N(A − µjId) along R(A − µjId), j =
1, . . . , `. They have the properties that πiπj = 0 whenever i 6= j and that
π1 + . . . π` = Id. Hence, for an arbitrary x ∈ Rd the asymptotic behavior is
dominated by the largest eigenvalue in absolute terms, say µ1. If, however,
x is chosen specifically as an element of the complement of N(A− µ1Id), i.e.
such that π1x = 0, the asymptotic behavior is governed by the second largest
eigenvalue in absolute terms. Obviously, one proceed further in this manner
until all eigenvalues are exhausted. From the diagonal representation of A,
the projections πj are given by

πj = Q

0 0 0
0 Idj 0
0 0 0

Q−1, j = 1, . . . , `

where dj is the dimension of the eigenspace related to eigenvalue µj and where
the columns of Q consist of generalized eigenvectors which form a basis of
Rd.

B More on the MET

Relation to Birkhoff’s ergodic theorem To justify the labeling ergodic
in the MET, I relate it to Birkhoff’s ergodic theorem. Let the state space be
one-dimensional, i.e. d = 1. Then define f(ω) = log |a(ω)| where a(ω) stands
for A(ω). The ergodicity of θ and the integrability condition imply that the
prerequisites of Birkhoff’s pointwise ergodic theorem are satisfied.17 Thus,

1

t

t−1∑
j=0

f(θjω) −→
∫

Ω

fdP = λ.

As log |ϕ(t, ω, x)| =
∑t−1

j=0 log |a(θjω)| + log |x|, statement (iii) in the MET

corresponds exactly the Birkoff’s theorem because limt→±∞
1
t
|x| converges

to zero. Birkhoff’s theorem, however, cannot be immediately generalized to
higher dimensions because the matrix multiplication is not commutative.

The case of triangular matrices To get a more profound understanding
of the MET, it is instructive to examine the case of triangular matrices.18

17An introduction to ergodic theory can be found, f.e., Silva (2008, chapter 5), Grim-
mett and Stirzaker (2001, section 9.5), or Colonius and Kliemann (2014, section
10.1).

18This exposition follows Arnold (2003, p.129–130) and Berger (1993, p.155).
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Let A(ω) ∈ GL(2) be upper triangular:

A(ω) =

(
a(ω) c(ω)

0 b(ω)

)
, a(ω) 6= 0 and b(ω) 6= 0.

Φ(t) is then given by

Φ(t) = At−1 . . . A1A0 =

(∏t−1
j=0 aj

∑t−1
k=0 at−1 . . . ak+1 ck bk−1 . . . b0

0
∏t−1

j=0 bj

)
.

Note that Re1 = span(1, 0)′ is an invariant subspace for the Φ(t)’s. Let
the stochastic sequences {at}, {bt}, and {ct} be ergodic with α = E log |at|,
β = E log |bt|, and γ = E log |ct|. Then

1

t

∞∑
j=0

log |at| → α and
1

t

∞∑
j=0

log |bt| → β.

Hence,

1

t
log | det Φ(t)| → α + β.

From implication (v) of the MET, it follows that λ1 + λ2 = α + β. Ob-
viously, the Lyapunov exponents of [Φ(t, ω)]11 and [Φ(t, ω)]22 are α and β,
respectively. Moreover, the Lyapunov exponent of [Φ(t, ω)]12 is less than or
equal to max{α, β}. The subadditivity of the lim sup implies λ(x + y) ≤
max{λ(x), λ(y)}, with equality if λ(x) 6= λ(y), hence using the Euclidean
norm in GL(2)

1

t
log ‖Φ(t, ω)‖ → λ1 = max{α, β}.

Thus,

λ1 = max{α, β} > α + β

2
> λ2 = min{α, β} for α 6= β.

When α = β, λ1 = α = β with multiplicity 2.
To compute the Lyapunov spaces, assume without loss of generality α >

β, hence λ1 = α and λ2 = β. For any vector x = (x1, 1)′ to grow at rate β,
x must be an eigenvector with respect to eigenvalue b(t) = [Φ(t)]22. Thus(

a(t) c(t)
0 b(t)

)(
x1

1

)
= b(t)

(
x1

1

)
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with a(t) = [Φ(t)]11 and c(t) = [Φ(t)]12. Taking limits and recognizing that
b(t)/a(t)→ 0, one obtains

x1 = − lim
t→∞

c(t)

a(t)
= −

∞∑
k=0

ckbk−1 . . . b1b0

ak . . . a1a0

.

This defines the random Lyapunov subspace L(λ2) = L(β) = span(x1, 1)′.
Because x has to grow at rate β, x must be random. Moreover, this random-
ness depends on the entire sequence {At}. The other Lyapunov subspace is,
as noted before, L(λ1) = L(α) = Re1.

C Proof of Theorem 2

The first part of the proof replicates the proof proposed by Arnold and
Crauel (1992) and Arnold (2003, theorem 5.6.5) omitting some of tech-
nical details.

Proof. First I prove that the expressions for x
(b)
t and x

(f)
t are well-defined.

Consider for this purpose a trajectory starting in x denoted by ϕ(t, ω, x).
Iterating the difference equation backward

ϕ(t, ω, x) = Φ(t, ω)x+ Φ(t, ω)
t−1∑
j=0

Φ(t− j, ω)−1b(θt−1−jω).

This implies

πs(θtω)ϕ(t, ω, x) = πs(θtω)Φ(t, ω)x

+ πs(θtω)Φ(t, ω)
t−1∑
j=0

Φ(t− j, ω)−1b(θt−1−jω)

= Φ(t, ω)πs(ω)x

+ Φ(t, ω)
t−1∑
j=0

Φ(t− j, ω)−1πs(θt−jω)b(θt−1−jω) (C.1)

Next choose β ∈ (0,min{−λs−κ, λu+κ} where κ satisfies λs = maxλj<0 λj <
−κ < 0 < κ < λu = minλj>0 λj. The first term in the above expression then

converges exponentially fast to zero because
∥∥∥Φ(t, ω)|Ls(ω)

∥∥∥ ≤ e−βt.

The integrability condition E log+ ‖b‖ <∞ implies

∞∑
j=0

P

[
log+ ‖b(θt−j−1ω)‖ > β

2

]
<∞.
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This implies by the Borel-Cantelli lemma that almost surely

lim sup
j≥0

1

j
log+ ‖b(θt−j−1ω)‖ ≤ β

2
.

Hence

lim sup
j≥0

1

j
log ‖Φ(j, θt−jω)πs(θt−jω)b(θt−1−jω)‖

≤ lim sup
j≥0

1

j
log ‖Φ(j, θt−jω)‖ ‖πs(θt−jω)b(θt−1−jω)‖ ≤ −β

2
.

The second term in equation (C.1) therefore is

Φ(t, ω)
t−1∑
j=0

Φ(t− j, ω)−1πs(θt−jω)b(θt−1−jω)

=
t−1∑
j=0

Φ(j, θt−jω)−1πs(θt−jω)b(θt−1−jω)

converges almost surely to x
(b)
t . Thus, x

(b)
t is well-defined. A similar argument

can be made with respect x
(f)
t

Using the towering property of conditional expectations and omitting the
dependence on ω whenever possible, the solution given in equation (3.1)
indeed solves the expectational difference equation:

Etxt+1 = Et

{
Φ(t+ 1)x+ Φ(t+ 1)

∞∑
j=0

Φ(t+ 1− j)−1πs(θt+1−jω)bt−j

− Φ(t+ 1)Et+1

[
∞∑
j=0

Φ(t+ j + 2)−1πu(θt+j+2ω)bt+1+j

]}
= AtΦ(t)x+ Φ(t+ 1)Φ(t+ 1)−1πs(θt+1ω)bt

+ AtΦ(t)
∞∑
j=0

Φ(t− j)−1πs(θt−jω)bt−1−j

− AtΦ(t)Et

[
∞∑
j=0

Φ(t+ j + 1)πu(θt+j+1ω)bt+j

]
+ Φ(t+ 1)Φ(t+ 1)−1πu(θt+1ω)bt

= Atxt + (πs(θt+1ω) + πu(θt+1ω))bt = Atxt + bt.
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The solution (3.1) depends parametrically on the unknown x(ω). In order
to fix x(ω), I resort to the initial value condition Rx0(ω) = c which implies

c − Rx
(p)
0 (ω) = Rx(ω). The boundedness condition further requires that

x(ω) ∈ Ls(ω) or, equivalently, that πu(ω)x(ω) = 0. These two conditions
then determine x(ω) uniquely if the rank condition (3.2) is satisfied.

D Computing Lyapunov Exponents

Although the Lyapunov exponents and the corresponding subspaces are de-
fined in a straightforward manner on the theoretical level, it is not a straight-
forward task to compute them numerically. The reason for this difficulty
stems from the exponential growth of the elements in Φ(t), respectively Υ,
as t becomes large. Trying to compute these matrices directly very quickly
hits the numerical bounds of any computer. To avoid this problem itera-
tive QR and SVD decompositions have been proposed (see Dieci and Elia,
2008).

In this paper, I use the QR approach which is very easy to implement.
The algorithm is initialized by taking some X(0) = A0 as a starting value.
Let the QR decomposition of X(0) be given as X(0) = Q0R0 where Q0 is
an orthogonal matrix and R0 an upper triangular matrix.19 Then compute
X(1) = A1X(0) and perform the QR decomposition of X(1)Q0 = Q1R1.
Obviously, X(1)X(0) = Q1R1R0. Proceeding in this way, the QR decompo-
sition of Φ(t) = X(t− 1) . . . X(1)X(0) is obtained:

Φ(t) = Qt−1Rt−1 . . . R1R0.

Generalizing the arguments made in Section 2.3 for triangular 2×2 matrices
to d× d matrices, one gets

λj = lim
t→∞

1

t
log

t−1∏
k=0

[Rk]jj = lim
t→∞

1

t

t−1∑
k=0

log [Rk]jj, j = 1, . . . `,

where [Rk]jj is the j-th diagonal element of Rk. The algorithm stops when
a sufficient precision is obtained. For further details see Dieci and Elia
(2008) and the literature cited therein.

19Given the assumption of the invertibility of the matrices At, the QR decomposition is
unique if the diagonal elements of R are taken to be strictly positive.
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